¹³³Xe β^- decay (5.2475 d) 1961Er04,1968Al16,1992Ma05

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov and A. Rodionov, F. G. Kondev	NDS 112, 855 (2011)	31-Oct-2010

Parent: ¹³³Xe: E=0.0; $J^{\pi}=3/2^+$; T_{1/2}=5.2475 d 5; Q(β^-)=427.4 24; $\%\beta^-$ decay=99.9896 5

1992Ma05: ¹³³Xe gas source; measured $E\gamma$, $I\gamma$, $T_{1/2}$; HPGe detector.

1961Er04: ¹³³Xe source was implanted in Al-backing with isotope separator; measured E γ . I γ , Ece, Ice, $\alpha(exp)$, T_{1/2}, Q(β^{-}).

Separator, NaI(Tl) detector, double-focusing magnetic spectrometer.

1968A116: ¹³³Xe gas source; measured $E\gamma$, $I\gamma$, $T_{1/2}$; Ge(Li) detector.

Others: 1952Be55, 1953Gr07, 1958Al98, 1958Pl55, 1959Jh17, 1960Bo02, 1960Mu03, 1962Th12, 1964Si21, 1965Ge04, 1969Fr04, 1970Av01, 1980VyZZ.

¹³³Cs Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0 80.9979 8	7/2 ⁺ 5/2 ⁺	stable 6.283 ns <i>14</i>	$T_{1/2}$: from Adopted Levels. Measured values in ¹³³ Xe β^- decay (5.2475 d) are 6.0 ns 4 (1953Gr07) 6.3 ns 2 (1958A198) 6.25 ns 10 (1962Th12) 6.3 ns 3 (1965Gr04)
160.6121 <i>10</i> 383.8491 <i>8</i>	5/2 ⁺ 3/2 ⁺		(1)550107), 0.5 hs 2 (1)5071190, 0.25 hs 10 (1)0211112), 0.5 hs 5 (1)05000+).

[†] From a least-squares fit to $E\gamma's$.

[‡] From Adopted Levels.

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(43.6 24)	383.8491	0.0087 10	6.86 9	av E β =11.10 63
(266.8 24)	160.6121	1.4 6	7.10 19	av $E\beta = 75.16~75$
346 <i>3</i>	80.9979	98.5 <i>13</i>	5.619 12	av $E\beta = 100.62~79$
				E(decay): from 1961Er04. Other: 347 4 (1952Be55).

[†] From intensity balances.

[‡] For absolute intensity per 100 decays, multiply by 0.999896 5.

 $\gamma(^{133}Cs)$

Iγ normalization: From $\Sigma(I(\gamma+ce))=100$ to g.s. and by assuming that there is no direct β^- feeding to the ¹³³Cs ground state. I(Kα₂ x ray/Kα₁ x ray)=0.5310 *15*, I(Kβ₁ x ray/Kα₁ x ray)=0.1767 *21*, I(Kβ x ray/Kα x ray)=0.2021 *10* (2007Ya02).

E_{γ}^{\ddagger}	$I_{\gamma}^{\#@}$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{\dagger}	Comments
79.6142 12	1.2 5	160.6121	5/2+	80.9979 5/2+	M1+E2	0.124 15	1.77 3	$\begin{aligned} \alpha(\text{K}) = 1.495 \ 22; \ \alpha(\text{L}) = 0.217 \ 6; \\ \alpha(\text{M}) = 0.0447 \ 13; \ \alpha(\text{N}+) = 0.0107 \ 3 \\ \alpha(\text{N}) = 0.00940 \ 25; \ \alpha(\text{O}) = 0.00128 \ 3; \\ \alpha(\text{P}) = 5.84 \times 10^{-5} \ 9 \\ \alpha(\text{L}1) = 0.1816 \ 25; \ \alpha(\text{L}2) = 0.0220 \ 21; \\ \alpha(\text{L}3) = 0.013 \ 3 \\ \text{Mult.: } \text{K:L1:L2:L3} = 0.57 \ 7:0.060 \\ 8: \le 0.009: \le 0.009 \ (1969\text{Fr04}). \\ \delta: \ \text{Others:} < 0.16 \ (1969\text{Fr04}); \ 0.14 \ 3 \end{aligned}$

1961Er04,1968Al16,1992Ma05 (continued)

 $^{133}\mathrm{Xe}\,\beta^-$ decay (5.2475 d)

γ ⁽¹³³ Cs) (continued)										
E _γ ‡	Ι _γ #@	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{\dagger}	Comments	
80.9979 <i>11</i>	100	80.9979	5/2+	0.0	7/2+	M1+E2	0.158 5	1.703	calculated by evaluators with BrIccMixing program from known shell intensities. I _y : average of 0.8 <i>I</i> (1961Er04) and 1.6 7 (1968A116). $\alpha(K)=1.431\ 20;\ \alpha(L)=0.216$ <i>4</i> ; $\alpha(M)=0.0447\ 8$; $\alpha(N)=0.00939\ 16$; $\alpha(O)=0.001271\ 20$; $\alpha(P)=5.56\times10^{-5}\ 8$ $\alpha(L1)=0.1730\ 24$; $\alpha(L2)=0.0253\ 9$; $\alpha(L3)=0.0181\ 10$ Mult.: K:L1:L2:L3:M1:M2: M3:N1:N2+=100:12.9 <i>4</i> :1.94\ 6:1.44\ 5:3.0\ 2:0.56 7:0.37\ 5:0.64\ 5:0.08\ 3 averages of 1061Pr00	
160.6120 16	0.2889 23	160.6121	5/2+	0.0	7/2+	M1+E2	0.96 5	0.294 6	averages of 1961Br09, 1961Er04, 1964Si21 and 1969Fr04 (evaluated by 1982KhZW). $\alpha(K)=1.43$ 4, weighted average of $\alpha(K)exp=1.39$ 6 (1961Er04) and 1.46 5 (1970Av01) (absolute K x ray and γ -ray counting). δ : Others: 0.161 9 calculated by evaluators using the BrIccMixing program from shell intensities cited. $\alpha(K)=0.234$ 4; $\alpha(L)=0.0471$	
									13; $\alpha(M)=0.0099$ 3; $\alpha(N+)=0.00232$ 7 $\alpha(N)=0.00205$ 6; $\alpha(O)=0.000261$ 7; $\alpha(P)=8.08\times10^{-6}$ 12 I _y : from branching ratio in adopted gammas. Others: 0.242 25 (1992Ma05), 0.109 10 (1961Er04) and 0.174 9 (1968A116). Mult.: ce(K)=0.025 6 (1980VyZZ).	
223.2368 13	0.00037 5	383.8491	3/2+	160.6121	5/2+	M1+E2	-0.114 14	0.0975	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0836 \ 12; \\ &\alpha(\mathbf{L}) = 0.01103 \ 16; \\ &\alpha(\mathbf{M}) = 0.00226 \ 4; \\ &\alpha(\mathbf{N}) = 0.000477 \ 7; \\ &\alpha(\mathbf{O}) = 6.64 \times 10^{-5} \ 10; \\ &\alpha(\mathbf{P}) = 3.26 \times 10^{-6} \ 5 \\ &\mathbf{I}_{\gamma}: \text{ from branching ratio in adopted gammas. Others:} \end{aligned}$	

$\gamma(^{133}Cs)$ (continued)

E_{γ}^{\ddagger}	Ι _γ #@	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α^{\dagger}	Comments
302.8508 <i>5</i>	0.0150 22	383.8491	3/2+	80.9979	5/2+	M1+E2	+0.022 20	0.0434	$\begin{array}{c} 0.0004 \ 4 \ (1961 \text{Er} 04), \ 0.00065 \\ 61 \ (1968 \text{A} 116) \ \text{and} \ 0.00044 \ 18 \\ (1992 \text{Ma} 05). \\ \alpha(\text{K}) = 0.0373 \ 6; \ \alpha(\text{L}) = 0.00484 \ 7; \\ \alpha(\text{M}) = 0.000988 \ 14; \\ \alpha(\text{N}+) = 0.000240 \ 4 \end{array}$
									$\begin{aligned} &\alpha(N) = 0.000209 \ 3; \\ &\alpha(O) = 2.92 \times 10^{-5} \ 4; \\ &\alpha(P) = 1.453 \times 10^{-6} \ 21 \\ I_{\gamma}: \text{ unweighted average of } 0.0123 \\ &12 \ (1992\text{Ma05}), \ 0.0135 \ 4 \\ &(1961\text{Er04}) \text{ and } 0.0193 \ 7 \\ &(1968\text{A116}). \end{aligned}$
383.8485 12	0.0073 10	383.8491	3/2+	0.0	7/2+	E2		0.0202	$\alpha(K)=0.01684\ 24;\ \alpha(L)=0.00270$ 4; $\alpha(M)=0.000560\ 8;$ $\alpha(N+)=0.0001326\ 19$ $\alpha(N)=0.0001166\ 17;$ $\alpha(O)=1.541\times10^{-5}\ 22;$ $\alpha(P)=5.90\times10^{-7}\ 9$ I _y : from branching ratio in adopted gammas. Others: 0.00090\ 4\ (1992Ma05), 0.00618\ 19\ (1961Er04) and 0.0062\ 9\ (1961Er04).

[†] Additional information 1. [‡] From adopted gammas. Spectroscopic information on conversion coefficients and subshell ratios from ¹³³Xe β^- decay data is presented. The penetration effect in the conversion was investigated in 1970To01, 1975Ra17, 1979Th02, but the results were contradictory.

[#] Normalized to $I\gamma(80.9974)=100$ by the evaluators. [@] For absolute intensity per 100 decays, multiply by 0.369 *3*.

¹³³₅₅Cs₇₈