¹²⁰Sn(¹⁶O,3nγ) 1974Gi01,1997Em01

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov and A. Rodionov, F. G. Kondev	NDS 112, 855 (2011)	31-Oct-2010

1974Gi01: ¹²⁰Sn(¹⁶O,3n γ), E=60-90 MeV; measured γ , $\gamma\gamma$, $\gamma(\theta)$; deduced levels, δ , J^{π} . Cyclotron, Ge detectors, enriched target.

1997Em01: 120 Sn(16 O,3n γ) E=70 MeV. Measured lifetimes by recoil-distance Doppler-shift technique.

Others: 1991Pa04, 1987Ma57, 1996Ha20.

The level scheme was constructed by 1974Gi01 on the basis of $\gamma\gamma$ -coincidence measurements, energy sums, intensity balance and excitation functions and based upon the 9/2⁻ state (T_{1/2}=5.4 h) of ¹³³Ce. In preceding evaluation of ¹³³Ce data (1995Ra12), this scheme was expanded using the subsequent results of ¹³³Ce investigations and γ -rays, unplaced by 1974Gi01. At present, the evaluators added to the ¹³³Ce level scheme of 1995Ra12 the 1898.6-keV, 15/2⁺ level, four transitions from unplaced by 1974Gi01, and assigned band structure according to 1987Ma57, 1996Ha20.

¹³³Ce Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0 ^{<i>a</i>}	$1/2^{+}$	97 min 4	T _{1/2} : from 'Adopted Levels'.
37.3 ^{&} 6	9/2-	4.9 h 4	Additional information 1. E(level),T _{1/2} : from 'Adopted Levels'.
134.3 ^a 3	$3/2^{+}$		
207.30 ^{&} 20	$11/2^{-}$	52.7 ps 21	
317.9 ^a 5	5/2+	•	
570.4 ^a 7	7/2+		
592.1 ^{&} 4	$13/2^{-}$	5.5 ps <i>3</i>	
814.7 ^{<i>a</i>} 12	$9/2^{+}$		
826.9 ^{&} 4	$15/2^{-}$	2.6 ps 6	
1200.5 11	$(15/2)^{-}$		
1343.5 ^{&} 6	$17/2^{-}$	≤0.7 ps	
1589.6 ^{&} 7	19/2-	≤0.7 ps	
1898.6 [@] 11	$15/2^{+}$		
2096.2 [@] 10	$17/2^{+}$	3.7 ps 4	
2198.6 ^{&} 12	$21/2^{-}$		
2297.2 [@] 11	$19/2^{+}$	3.1 ps 3	
2415.4 22	,	1	
2456.7 [@] 11	$21/2^+$	3.7 ps 4	
2485.8 ^{&} 20	$23/2^{-}$		
2620.8 22	(21/2)		
2646.2 [@] 11	$23/2^+$		
2880.9 [@] 11	$25/2^+$		
3175.9 [@] 12	$27/2^+$		
3533.4 [@] 14	$29/2^{+}$		

[†] From a least-squares fit to $E\gamma$'s.

[‡] From multipolarities of transitions and band structures according to 1974Gi01, 1987Ma57 and 1996Ha20.

[#] From 1997Em01, except as noted.

[@] Band(A): Band based on the $15/2^+$ state; configuration= $\nu h_{11/2} \otimes \pi(h_{11/2},g_{7/2})$.

& Band(B): Band based on the $9/2^-$ state; configuration= $\nu 9/2[514]$.

^{*a*} Band(C): Band based on the $1/2^+$ state; configuration= $\nu 1/2[400]$.

			¹²⁰ S	5 n (¹⁶ Ο,3n γ) 197	74Gi01,19971	Em01 (continued)
γ ⁽¹³³ Ce)							
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	Comments
134.3 <i>3</i> <i>x</i> 154.7 <i>5</i>	7.2 <i>14</i> 3.4 <i>11</i>	134.3	3/2+	0.0	$1/2^{+}$		
159.5 2	23.6 24	2456.7	$\frac{21}{2^+}$	2297.2	$\frac{19}{2^{-}}$	D+Q M1+F2	$\gamma(\theta): A_2 = -0.35 \ 6.$
183.6 4	4.8 9	317.9	$5/2^+$	134.3	$3/2^+$		$y(0)$, $R_2 = -0.55$ 7 .
189.5 2 197.3 [@] 4	22 Z 4.4 9	2646.2 2096.2	$\frac{23}{2^+}$ $\frac{17}{2^+}$	2456.7 1898.6	$\frac{21}{2^{+}}$ $\frac{15}{2^{+}}$	D+Q	$\gamma(\theta)$: A ₂ =-0.39 6.
200.7 4	19 4	2297.2	$19/2^+$	2096.2	$17/2^+$	M1+E2	$\gamma(\theta): A_2 = -0.38$ 7.
² 05.4 4 ^x 208.9 6	4.6 9 1.3 <i>4</i>	2020.8	(21/2)	2415.4			
^x 215.4 6 ^x 223.8 4	2.2 7 7.1 <i>14</i>						
234.80 ^{<i>a</i>} 23	9.9 ^{<i>a</i>} 9	826.9	15/2-	592.1	13/2-	D+Q ^{&}	I _{γ} : divided according to 1987Ma57. $\gamma(\theta)$: A ₂ =-0.46 7.
234.80 ^{<i>a</i>} 23	10 ^a 3	2880.9	25/2+	2646.2	23/2+	D+Q ^{&}	I _γ : divided according to 1987Ma57. $\gamma(\theta)$: A ₂ =-0.46 7.
⁴ 240.8 5 246.0 8	9.0 <i>18</i> 3.6 <i>10</i>	1589.6	19/2-	1343.5	17/2-	(M1+E2)	Mult.: by analogy with other M1+E2 γ -rays belonging to the rotational band (stated in Table 4 of 1974Gi01).
252.6 8 ^x 276.8 8 ^x 283 1 6	2.2 7 2.6 8 6 9 14	570.4	7/2+	317.9	5/2+		
294.9 6 ×302 9 6	18 4 7 3 14	3175.9	$27/2^+$	2880.9	25/2+	D+Q	$\gamma(\theta)$: A ₂ =-0.42 6.
357.5 7	14 3	3533.4	29/2+	3175.9	$27/2^+$		$\gamma(\theta): A_2 = -0.07 \ 11.$
384.7 4 ^x 390.6 8	64 6 5.5 11	592.1	13/2-	207.30	11/2-	M1+E2	$\gamma(\theta)$: A ₂ =-0.61 5.
400.0 [@] 8 ^x 416.2 <i>12</i>	5.3 <i>11</i> 2.8 <i>6</i>	2297.2	19/2+	1898.6	15/2+		
423.0 ^(a) 8 435.9 9 x444.4 9 x457.6 9 x464.6 9	6.9 <i>14</i> 4.6 9 8.2 <i>15</i> 5.0 <i>10</i> 5.2 <i>10</i>	2880.9 570.4	25/2 ⁺ 7/2 ⁺	2456.7 134.3	21/2 ⁺ 3/2 ⁺		
496.8 <i>10</i>	9.5 19	814.7	9/2+	317.9	5/2+		
x507.70 10 x511.0 10	7.3 14 18.6 40						
516.7 5 530.2 <i>11</i>	21.1 <i>21</i> 5 <i>1</i>	1343.5 3175.9	17/2 ⁻ 27/2 ⁺	826.9 2646.2	$\frac{15}{2^{-}}$ $\frac{23}{2^{+}}$	M1+E2	$\gamma(\theta): A_2 = -0.75 \ 4.$
^x 544.2 <i>11</i> ^x 553 1 <i>11</i>	7.9 <i>15</i> 449		,		,		
554.9 <i>11</i>	12.9 25	592.1	13/2-	37.3	9/2-	E2	$\gamma(\theta)$: A ₂ =0.19 <i>14</i> .
x562.3 11 x563.7 10	5.8 <i>12</i> 15.5 <i>30</i>						
^x 570.1 11 ^x 577.3 11	9.3 <i>19</i> 7.3 <i>15</i>						
x582.2 12	4.7 9	1200.5	$(15/2)^{-}$	502 1	13/2-	(M1 + E2)	$x(\theta): \Lambda = 0.64.6$
000.7 12	9.8 20	1200.5	(13/2)	392.1	13/2	(1VI1+E2)	$\gamma(0)$. $A_2 = -0.04$ 0. I _{γ} : divided according to 1987Ma57.
608.7 <i>12</i> <i>x</i> 617.3 <i>12</i>	4.7 <i>10</i> 15.0 <i>30</i>	2198.6	21/2-	1589.6	19/2-	M1+E2	I_{γ} : divided according to 1987Ma57.
619.7 <i>6</i> ^x 624.8 <i>19</i>	66 7 3.4 10	826.9	15/2-	207.30	11/2-	E2	$\gamma(\theta)$: A ₂ =0.30 <i>15</i> .

Continued on next page (footnotes at end of table)

¹²⁰Sn(¹⁶O,3nγ) 1974Gi01,1997Em01 (continued)

$\gamma(^{133}\text{Ce})$ (continued)

${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [#]	Comments
x630.1 13	4.6 10						
^x 644.4 <i>13</i>	4.4 10						
^x 691.9 <i>14</i>	7.3 14						
^x 706.3 21	3.9 10						
751.3 8	21.4 21	1343.5	$17/2^{-}$	592.1	$13/2^{-}$	E2	$\gamma(\theta)$: A ₂ =0.33 15.
762.6 8	28 <i>3</i>	1589.6	19/2-	826.9	$15/2^{-}$	E2	$\gamma(\theta)$: A ₂ =0.34 14.
^x 794.7 16	10.8 21						
^x 798.0 16	4.0 8						
^x 817.3 25	3.4 10						
855.7 17	9.3 19	2198.6	$21/2^{-}$	1343.5	17/2-		
^x 891.0 <i>18</i>	4.0 8						
896.2 ^{<i>a</i>} 18	2.1 ^{<i>a</i>} 5	2096.2	17/2+	1200.5	(15/2)-		I _y : divided according to 1987Ma57. $\gamma(\theta)$: A ₂ =0.15 <i>14</i> .
896.2 ^a 18	14.6 ^a 20	2485.8	$23/2^{-}$	1589.6	$19/2^{-}$		I_{γ} : divided according to 1987Ma57.
^x 908.0 18	5.5 11						, 0
^x 913.5 18	4.4 9						
954.0 19	16.4 30	2297.2	$19/2^{+}$	1343.5	$17/2^{-}$		$\gamma(\theta)$: A ₂ =-0.00 20.
^x 957.0 19	5.2 10						
^x 981.6 20	6.6 13						
^x 1023.4 20	8.0 16						
1071.9 <i>21</i>	8.8 18	2415.4		1343.5	$17/2^{-}$		
^x 1075.8 21	5.6 22						
^x 1190.7 24	11.3 22						
1269.3 <i>13</i>	30 <i>3</i>	2096.2	$17/2^{+}$	826.9	$15/2^{-}$		
1304.5 [@] 30	8.3 17	1898.6	$15/2^{+}$	592.1	13/2-		

[†] From 1974Gi01; ΔE assigned by evaluator on the basis of the author's statement that $\Delta E\gamma \approx 0.1\%$ for strong well-resolved lines and increased two or three times higher for the weaker lines: $\Delta E\gamma = 0.1\%$ for $I\gamma \ge 20$, $\Delta E\gamma = 0.2\%$ for $20 > I\gamma \ge 4$, $\Delta E\gamma = 0.3\%$ for the others.

[‡] For 55° relative to the incident beam direction in 1974Gi01. $\Delta I\gamma$ assigned by evaluator on the basis of the author's statement that $\Delta I\gamma \approx 10\%$ for strong well-resolved lines and increased two or three times higher for the weaker lines: $\Delta I\gamma = 10\%$ for $I\gamma \ge 20$, $\Delta I\gamma = 20\%$ for $20 > I\gamma \ge 4$, $\Delta I\gamma = 30\%$ for the others.

[#] From $\gamma(\theta)$ (1974Gi01).

^(a) Inserted in the level scheme from unplaced γ 's by evaluators.

& Mult.=D+Q for multiply placed transitions.

^{*a*} Multiply placed with intensity suitably divided.

^b Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

1974Gi01,1997Em01

 120 Sn(16 O,3n γ)

¹³³₅₈Ce₇₅

4

¹³³₅₈Ce₇₅