¹³³La ε decay (**3.912** h) 1976He11,1980VyZZ

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov and A. Rodionov, F. G. Kondev	NDS 112,855 (2011)	31-Oct-2010

Parent: ¹³³La: E=0.0; $J^{\pi}=5/2^+$; $T_{1/2}=3.912$ h 8; $Q(\varepsilon)=2059\ 28$; $\mathscr{K}\varepsilon+\mathscr{K}\beta^+$ decay=100 1976He11: ¹³³La ε decay [from ¹³³Ce ε decay, produced in ¹³²Ba(α ,3n)]; measured γ , γ (t), $\gamma\gamma$ coin.; deduced levels, J^{π} , α (exp), log *ft*, $T_{1/2}(^{133}La)$. Cyclotron, chemical and mass separations, Ge(Li) detectors.

1980VyZZ, 1983JoZX: ¹³³La ε decay [from Gd(p,X) E=660 MeV]; measured γ , ce; deduced levels, J^{π} . Synchrocyclotron, chemical and mass separations, particle-vibrational coupling model. Others: 1966Ha23, 1973Re05.

¹³³Ba Levels

E(level) [†]	J ^{π‡}	T _{1/2} ‡	Comments
0.0	1/2+	10.551 y <i>11</i>	
12.326 6	3/2+	7.0 ns 3	
288.251 9	$11/2^{-}$	38.93 h 10	0.3% of all ¹³³ La decays populate the ¹³³ Ba isomer (1966Ha23).
291.186 9	5/2+		
302.395 11	3/2+		
539.800 13	$1/2^{+}$		
577.553 <i>13</i>	7/2+		
630.567 10	5/2+		
676.486 12	$3/2^+, 5/2^+$		
858.499 11	$3/2^{+}$		
862.80 9	$(7/2)^+$		
883.39 5	9/2+		
887.134 12	5/2+		
923.955 10	5/2+		
1021.584 23	3/2+		
1112.344 <i>12</i>	$3/2^+, 5/2^+, 7/2^+$		
1211.792 <i>12</i>	$3/2^+, 5/2^+$		
1283.959 24	3/2-		
1329.316 18	5/2+		
1352.76 5	7/2+		
1528.64 9	3/2,5/2+		
1532.40 8	3/2,5/2,7/2+		
1563.399 24	5/2+		
1620.56 4	5/2+		
1689.74 6	3/2+,5/2,7/2+		
1706.94 19	3/2,5/2+		
1769.70 5	3/2,5/2+		
1830.22 <i>3</i>	3/2,5/2+		

[†] From a least-squares fit to $E\gamma's$.

[‡] From 'Adopted Levels'.

 ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(229 28)	1830.22	0.0027 6	7.98 17	0.0027 6	ε K=0.811 8; ε L=0.147 6; ε M+=0.0424 20
(289 28)	1769.70	0.0111 6	7.60 11	0.0111 6	ε K=0.822 5; ε L=0.139 4; ε M+=0.0398 11
(352 28)	1706.94	0.0120 9	7.75 9	0.0120 9	ε K=0.828 3; ε L=0.1336 20; ε M+=0.0381 7
(369 28)	1689.74	0.0177 22	7.63 10	0.0177 22	ε K=0.8297 24; ε L=0.1326 18; ε M+=0.0378 6
(438 28)	1620.56	0.061 4	7.25 7	0.061 4	ε K=0.8340 16; ε L=0.1293 12; ε M+=0.0367 4
(496 28)	1563.399	0.055 4	7.41 7	0.055 4	ε K=0.8366 12; ε L=0.1274 9; ε M+=0.0360 3
(527 28)	1532.40	0.0061 7	8.42 8	0.0061 7	ε K=0.8377 11; ε L=0.1265 8; ε M+=0.0358 3

Continued on next page (footnotes at end of table)

¹³³La ε decay (3.912 h) **1976He11,1980VyZZ** (continued)

$I\beta^+$ Ιε‡ $I(\varepsilon + \beta^+)^{\dagger \ddagger}$ E(decay) Comments E(level) Log ft 0.0054 8 8.48 9 0.0054 8 (530 28) 1528.64 εK=0.8379 11; εL=0.1264 8; εM+=0.0357 3 (706 28) 1352.76 0.131 9 7.36 5 0.131 9 εK=0.8423 6; εL=0.1231 4; εM+=0.03463 14 (730 28) 1329.316 0.079 5 7.61 5 0.079 5 εK=0.8427 5; εL=0.1228 4; εM+=0.03453 13 7.77 5 (775 28) 0.06250.062 5 εK=0.8434 5; εL=0.1222 4; εM+=0.03435 11 1283.959 (847 28) 0.168 11 0.168 11 εK=0.8444 4; εL=0.1215 3; εM+=0.03410 9 1211.792 7.42 5 (947 28) 1112.344 0.318 17 7.24 4 0.318 17 εK=0.8455 3; εL=0.12067 22; εM+=0.03383 7 (1037 28) 1021.584 0.115 7 7.77 4 0.115 7 εK=0.8463 3; εL=0.12005 18; εM+=0.03363 6 (1135 28) 923.955 1.59 8 6.71 4 1.59 8 εK=0.8470 2; εL=0.11950 15; εM+=0.03345 5 0.64 3 0.64 3 εK=0.8473 2; εL=0.11932 14; εM+=0.03339 5 (1172 28) 887.134 7.13 3 (1196 28) 0.066 7 0.066 7 εK=0.8474 2; εL=0.11920 14; εM+=0.03335 5 862.80 8.13 5 $(1201\ 28)$ 858.499 1.16 6 6.89 3 1.16 6 εK=0.8474 2; εL=0.11918 14; εM+=0.03334 5 (1383 28) 676.486 0.00031 12 0.192 17 7.80 5 0.192 17 av E_β=172 13; εK=0.8470 4; εL=0.11828 17; €M+=0.03306 5 (1428 28) 630.567 0.0025 8 0.95 5 7.13 3 0.95 5 av Eβ=192 13; εK=0.8464 6; εL=0.11800 19; *ε*M+=0.03297 *6* (1481 28) 577.553 0.0019 5 0.43 3 7.51 4 0.43 3 av E_β=216 13; εK=0.8451 9; εL=0.11764 22; *ε*M+=0.03286 7 (1757 28) 302.395 0.054 8 2.10 11 6.97 3 2.15 11 av Eβ=336 13; εK=0.828 3; εL=0.1145 5; €M+=0.03195 14 (1768 28) 291.186 0.030 5 1.10 11 7.26 5 1.13 11 av Eβ=341 13; εK=0.827 3; εL=0.1143 5; €M+=0.03190 14 (2047 28) 12.326 7.1 8 84 6 5.51 4 91 7 av Eβ=463 13; εK=0.784 6; εL=0.1079 9;

εM+=0.03008 24

 ϵ, β^+ radiations (continued)

[†] From intensity balances.

[‡] Absolute intensity per 100 decays.

From ENSDF

$\gamma(^{133}\text{Ba})$

I γ normalization: from $\Sigma(I(\gamma+ce)$ to g.s.)=100 and by assuming that there is no direct ε -decay feeding to the ¹³³Ba g.s. $(J^{\pi}=1/2^+)$; $I(\gamma^{\pm})/I\gamma(278\gamma)=4.58$ 11 (1976He11).

E_{γ}^{\ddagger}	I_{γ} ^{‡&}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	δ	α^{\dagger}	Comments
12.327 6	56.4 28	12.326	3/2+	0.0	1/2+	M1+E2	≤0.013	69.5 19	α(L)=55.2 15; α(M)=11.4 3; α(N+)=2.86 8 $ α(N)=2.46 7; α(O)=0.373 9; α(P)=0.0261 4 $ Mult.,δ: from 'Adopted Levels and gammas'. I _γ : from I(γ+ce)=3976 164 deduced using Iγ([±])=458 11 (1976He11), ε/β ⁺ =15.2 (theory 1972Dz09 with assumed uncertainty of 3%) and ΣI(γ+ce)=266 4, the total intensity feeding this state.
^x 113.43 6	0.21 4					M1,E2		1.0 3	ce(K)=38 6; ce(L2)+ce(L3)=9 2; ce(M)=2.3 4; α (K)exp=0.8 2 (1966Ha23) α (K)=0.71 12; α (L)=0.20 13; α (M)=0.04 3; α (N+)=0.010 7 α (N)=0.009 6; α (O)=0.0012 7; α (P)=3.89×10 ⁻⁵ 6
136.7 [@] 2	0.8 [@] 3	676.486	3/2+,5/2+	539.800	1/2+	M1,E2		0.52 12	ce(K)=7 <i>l</i> (1966Ha23) α (K)exp=0.4 <i>2</i> α (K)=0.40 <i>6</i> ; α (L)=0.10 <i>5</i> ; α (M)=0.020 <i>l1</i> ; α (N+)=0.005 <i>3</i> α (N)=0.0043 <i>23</i> ; α (O)=0.0006 <i>3</i> ; α (P)=2.27×10 ⁻⁵ <i>5</i>
158.4 [@] 3	0.07 [@] 3	1021.584	3/2+	862.80	(7/2)+	E2		0.33 6	ce(K)=4 <i>I</i> ; α (K)exp=0.26 <i>I</i> 2 (1966Ha23) α (K)=0.26 <i>3</i> ; α (L)=0.055 <i>2</i> 4; α (M)=0.012 <i>6</i> ; α (N+)=0.0028 <i>I</i> 2 α (N)=0.0024 <i>I</i> 1; α (O)=0.00035 <i>I</i> 4; α (P)=1.48×10 ⁻⁵ 5 E _{γ} : this transition questionably populates the 862.80-keV level in 1976He11, however, the level energy difference (158 78 9) fit:
210.54 6	0.20 5	887.134	5/2+	676.486	3/2+,5/2+	M1,E2		0.135 11	$\begin{array}{l} (136.76 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
227.82 6	0.31 5	858.499	3/2+	630.567	5/2+	M1,E2		0.106 6	ce(K)=8 2 (1966Ha23) α (K)exp=0.15 4 α (K)=0.0870 15; α (L)=0.015 4; α (M)=0.0031 8; α (N+)=0.00077 18 α (N)=0.00067 16; α (O)=9.7×10 ⁻⁵ 20; α (P)=5.2×10 ⁻⁶ 5
256.57 [@] 6	0.91 [@] 6	887.134	5/2+	630.567	5/2+	M1,E2		0.0741 14	ce(K)=16.5 25 (1966Ha23) α(K)exp=0.076 12

				¹³³ La	$\mathbf{a} \in \mathbf{dec}$	ay (3.912 h)) 1976	He11,1980Vy	ZZ (continued)
						$\gamma(1)$	¹³³ Ba) (cc	ontinued)	
${\rm E_{\gamma}}^{\ddagger}$	I_{γ} ‡&	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ	α^{\dagger}	Comments
									$\alpha(K)=0.0614\ 17;\ \alpha(L)=0.0100\ 18;\ \alpha(M)=0.0021\ 4;$ $\alpha(N+)=0.00052\ 9$ $\alpha(N)=0.00045\ 8;\ \alpha(O)=6.6\times10^{-5}\ 10;\ \alpha(P)=3.7\times10^{-6}\ 4$ $E_{\gamma}:$ level energy difference is 256.547\ 14;\ 256.340\ 26 in 1980VyZZ
275.925 7		288.251	11/2-	12.326	3/2+	M4		4.65	$\alpha(K)=3.345; \alpha(L)=1.01815; \alpha(M)=0.2294; \alpha(N+)=0.05658$ $\alpha(N)=0.04917; \alpha(O)=0.0070510; \alpha(P)=0.0003525$ E. Mult : from 'Adopted Levels and gammas'
278.835 17	100.0 32	291.186	5/2+	12.326	3/2+	M1+E2	0.9 16	0.0580 11	ce(K)=100×10 ¹ 15; ce(L)=145 25; ce(M)=35 6 (1966Ha23) α (K)exp=0.044 7; α (L)exp=0.0064 11; α (M)exp=0.0016 3 α (K)=0.0485 21; α (L)=0.0075 10; α (M)=0.00157 22; α (N+)=0.00039 5 α (N)=0.00034 5; α (O)=5.0×10 ⁻⁵ 5; α (P)=3.0×10 ⁻⁶ 4 δ : calculated by evaluators from I(ce) data (1966Ha23) using the BrIccMixing program.
$x^{281.8}$ 2 286.4 x^{0} 4	$0.5^{@} 2$ $1.22^{@} 4$	577.553	7/2+	291.186	5/2+	M1,E2		0.0536 14	ce(K)=11 2 (1966Ha23); α (K)exp=0.041 8 α (K)=0.0447 24; α (L)=0.0070 9; α (M)=0.00147 20; α (N+)=0.00036 5
290.06 [@] 5	56.5 [@] 5	302.395	3/2+	12.326	3/2+	M1+E2	1.0 12	0.0521 <i>13</i>	$\alpha(N)=0.000314; \alpha(O)=4.6\times10^{-5} 5; \alpha(P)=2.7\times10^{-6} 4$ ce(K)=52080; ce(L)=7010; ce(M)=183(1966Ha23) $\alpha(K)exp=0.0416; \alpha(L)exp=0.00568; \alpha(M)exp=0.00142$ $\alpha(K)=0.043921; \alpha(L)=0.00657; \alpha(M)=0.0013516;$ $\alpha(N+)=0.000334$ $\alpha(N)=0.000293; \alpha(O)=4.3\times10^{-5}4; \alpha(P)=2.8\times10^{-6}3$ δ : Calculated by evaluators with BrIccMixing program from ce(K)=52080, ce(L1)=7010 and $ce(M)=183(1966Ha23)$. Exclevel energy difference is 2900448; 29027522 in 1980VyZZ.
291.17 [@] 5	17.4 [@] 3	291.186	5/2+	0.0	1/2+	(E2)		0.0497	ce(K) \approx 120; ce(L) \approx 25 (1966Ha23) α (K)exp \approx 0.030; α (L)exp \approx 0.0065 α (K)=0.0403 6; α (L)=0.00743 11; α (M)=0.001568 22; α (N+)=0.000382 6 α (N)=0.000332 5; α (O)=4.76×10 ⁻⁵ 7; α (P)=2.28×10 ⁻⁶ 4
293.17 ^{@b} 11	1.0 [@] 2	923.955	5/2+	630.567	5/2+	M1,E2		0.0501 16	ce(K)≈11; ce(L)≈2 (1966Ha23) α (K)exp≈0.050; α (L)exp≈0.009 α (K)=0.0419 25; α (L)=0.0065 8; α (M)=0.00136 17; α (N+)=0.00034 4 α (N)=0.00029 4; α (O)=4.3×10 ⁻⁵ 4; α (P)=2.6×10 ⁻⁶ 4 E _γ : this transition questionably populates the 630.567-keV level (1976He11), poor fit, the level energy difference = 293.388 12.

 $^{133}_{56}\mathrm{Ba}_{77}$ -4

				¹³³ La	ε decay (3.9	912 h) 1	976He11,1980	VyZZ (continued)
						$\gamma(^{133}\text{Ba})$) (continued)	
E_{γ}^{\ddagger}	Ι _γ ‡&	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	α^{\dagger}	Comments
302.38 [@] 4	65.9 [@] 21	302.395	3/2+	0.0	1/2+	M1	0.0475	ce(K)=604 21; ce(L)=69 8; ce(M)=15 4 α (L)exp=0.0047 6; α (M)exp=0.0010 3 α (K)=0.0408 6; α (L)=0.00534 8; α (M)=0.001098 16; α (N+)=0.000276 4
309.56 5	0.55 5	887.134	5/2+	577.553	7/2+	M1,E2	0.0428 20	$\alpha(N)=0.0002374; \alpha(O)=3.63\times10^{-5} 5; \alpha(P)=2.66\times10^{-6} 4$ $ce(K)=5.8 18; \alpha(K)exp=0.047 15$ $\alpha(K)=0.036 3; \alpha(L)=0.0055 5; \alpha(M)=0.00115 12;$ $\alpha(N+)=0.000283 25$ $\alpha(N)=0.000245 23; \alpha(O)=3.63\times10^{-5} 22; \alpha(P)=2.2\times10^{-6} 3$
324.76 10	0.32 5	1211.792	3/2+,5/2+	887.134	5/2+			
328.18 3	1.19 7	630.567	5/2+	302.395	3/2+	M1+E2	0.0362 23	ce(L)=1.2 3; α (L)exp=0.0046 12 α (K)=0.030 3; α (L)=0.0046 3; α (M)=0.00095 8; α (N+)=0.000236 15 α (N)=0.000204 14; α (Q)=3.04×10 ⁻⁵ 12; α (P)=1.0×10 ⁻⁶ 3
339.35 4	1.63 16	630.567	5/2+	291.186	5/2+	M1+E2	0.0329 23	$\begin{array}{l} \alpha(N)=0.000204 \ 14, \ \alpha(O)=2.04\times10^{-1} \ 12, \ \alpha(1)=1.9\times10^{-5} \ 5 \\ ce(K)=11 \ 3; \ ce(L)=1.4 \ 4; \ \alpha(K)exp=0.030 \ 8; \ \alpha(L)exp=0.039 \ 11 \\ \alpha(K)=0.028 \ 3; \ \alpha(L)=0.00414 \ 21; \ \alpha(M)=0.00086 \ 6; \\ \alpha(N+)=0.000213 \ 11 \\ cn(N)=0.000213 \ 11 \\ cn(N)=0.000213 \ 4.0; \ \alpha(\Omega)=2.74\times10^{-5} \ 8; \ \alpha(P)=1.7\times10^{-6} \ 3 \\ cn(N)=0.000213 \ 4.0; \ \alpha(\Omega)=2.74\times10^{-5} \ 8; \ \alpha(P)=1.7\times10^{-6} \ 3 \\ cn(N)=0.000213 \ 10 \\ cn(N)=0.000213 \$
345.1 [@] 4	0.06 [@] 5	1021.584	3/2+	676.486	3/2+,5/2+			E_{γ} : this transition questionably populates the 676.486-keV level in 1976He11, however, the level energy difference (345.098 25) fits.
347.1 [@] 3	0.13 [@] 6	887.134	5/2+	539.800	$1/2^{+}$			
353.28 4	0.94 7	1211.792	3/2+,5/2+	858.499	3/2+	E2	0.0271	ce(K)=3.8 7; α (K)exp=0.018 4 α (K)=0.0223 4; α (L)=0.00378 6; α (M)=0.000794 12; α (N+)=0.000195 3
^x 355.97 3	1.19 6					E1	0.00738 11	$\alpha(N)=0.0001687\ 24;\ \alpha(O)=2.45\times10^{-3}\ 4;\ \alpha(P)=1.296\times10^{-6}\ 19$ $ce(K)=1.3\ 3;\ \alpha(K)exp=0.0041\ 12$ $\alpha(K)=0.00636\ 9;\ \alpha(L)=0.000810\ 12;\ \alpha(M)=0.0001659\ 24;$ $\alpha(N+)=4.14\times10^{-5}\ 6$ $\alpha(N)=3\ 56\times10^{-5}\ 5;\ \alpha(O)=5\ 39\times10^{-6}\ 8;\ \alpha(P)=3\ 75\times10^{-7}\ 6$
374.13 9 385.295 <i>14</i>	0.33 <i>5</i> 3.10 <i>11</i>	676.486 676.486	3/2 ⁺ ,5/2 ⁺ 3/2 ⁺ ,5/2 ⁺	302.395 291.186	3/2 ⁺ 5/2 ⁺	M1+E2	0.0231 23	ce(K)=16 5; ce(L)=2.5 7; ce(M)=0.7 3 $\alpha(K)exp=0.023 8; \alpha(L)exp=0.0036 3; \alpha(M)exp=0.0010 4$ $\alpha(K)=0.0196 23; \alpha(L)=0.00283 4; \alpha(M)=0.000588 10;$ $\alpha(N+)=0.0001461 21$ $\alpha(N)=0.0001260 18; \alpha(O)=1.89\times10^{-5} 5; \alpha(P)=1.22\times10^{-6} 21$
428.7 [@] 2	0.17 [@] 6	1352.76	7/2+	923.955	5/2+	M1	0.0194	ce(K)=1.0 3; α (K)exp=0.021 6 α (K)=0.01665 24; α (L)=0.00215 3; α (M)=0.000443 7; α (N+)=0.0001113 16 α (N)=9.56×10 ⁻⁵ 14; α (O)=1.467×10 ⁻⁵ 21; α (P)=1.081×10 ⁻⁶ 16

S

 $^{133}_{56}\mathrm{Ba}_{77}$ -5

			133	³ La ε deca	y (3.912 h)	1976He	e11,1980VyZ	Z (continued)
					$\gamma(^{13}$	³ Ba) (cont	inued)	
${\rm E_{\gamma}}^{\ddagger}$	I_{γ} ‡&	E _i (level)	${ m J}^{\pi}_i$	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
r 400 0 [@] h 0	0.00@ 5				<u> </u>			E_{γ} : 428.53 9 is placed from the 1351-keV (3/2 ⁺ ,5/2 ⁺) level (1980VyZZ), but this level is not supported by others, the level energy difference is equal to 428.74 5.
435.82 3	0.09° 5 1.02 6	1112.344	3/2+,5/2+,7/2+	676.486	3/2+,5/2+	E2	0.01452	ce(K)=2.6 5; α (K)exp=0.012 3 α (K)=0.01212 17; α (L)=0.00190 3; α (M)=0.000398 6; α (N+)=9.79×10 ⁻⁵ 14 α (N)=8.47×10 ⁻⁵ 12 α (Q)=1.247×10 ⁻⁵ 18 α (D)=7.20×10 ⁻⁷ 10
441.9 [@] 4	0.07 [@] 5	1329.316	5/2+	887.134	5/2+	M1,E2	0.0159 20	$\begin{aligned} \alpha(N) &= 8.47 \times 10^{-7} 12; \ \alpha(O) &= 1.247 \times 10^{-7} 18; \ \alpha(P) &= 7.20 \times 10^{-7} 10^{-7} \\ ce(K) &= 0.035 \ 12; \ \alpha(K) exp = 0.023 \ 10 \\ \alpha(K) &= 0.0135 \ 19; \ \alpha(L) &= 0.00191 \ 9; \ \alpha(M) &= 0.000395 \ 16; \\ \alpha(N+) &= 9.8 \times 10^{-5} \ 5 \end{aligned}$
								α (N)=8.5×10 ⁻⁵ 4; α (O)=1.28×10 ⁻⁵ 9; α (P)=8.5×10 ⁻⁷ 16 E _{γ} : this transition questionably populates the 887.134-keV level in 1976He11, the level energy difference = 442.182 19.
445.3 [@] 3	0.17 [@] 10	1329.316	5/2+	883.39	9/2+	(E2)	0.01365	ce(K)=0.7 3; α (K)exp=0.019 12 α (K)=0.01141 17; α (L)=0.00178 3; α (M)=0.000371 6; α (N+)=9.15×10 ⁻⁵ 13
								α (N)=7.92×10 ⁻⁵ 12; α (O)=1.166×10 ⁻⁵ 17; α (P)=6.79×10 ⁻⁷ 10 E _{γ} : poor fit, the level energy difference = 445.93 5. Mult.: M1,E2 from conversion data. M1 ruled out from placement in level scheme.
465.53 [@] 11	$0.42^{\textcircled{0}}6$	1352.76	7/2+	887.134	$5/2^{+}$			
469.41 5	0.85 6	1352.76	7/2+	883.39	9/2+	M1	0.01541	ce(K)=2.5 3; α (K)exp=0.013 2 α (K)=0.01326 19; α (L)=0.001709 24; α (M)=0.000351 5; α (N+)=8.84×10 ⁻⁵ 13
481.73 <i>3</i>	1.39 8	1021.584	3/2+	539.800	1/2+	M1,E2	0.0127 18	$\alpha(N)=7.58\times10^{-5}$ 11; $\alpha(O)=1.164\times10^{-5}$ 17; $\alpha(P)=8.60\times10^{-7}$ 12 ce(K)=3.0 4; $\alpha(K)$ exp=0.0096 13 $\alpha(K)=0.0108$ 17; $\alpha(L)=0.00150$ 11; $\alpha(M)=0.000310$ 20; $\alpha(N+)=7.7\times10^{-5}$ 6
								$\alpha(N) = 6.7 \times 10^{-5} 5; \alpha(O) = 1.00 \times 10^{-5} 9; \alpha(P) = 6.8 \times 10^{-7} 13$
494.5 [@] 3	0.12 [@] 6	1352.76	7/2+	858.499	3/2+			E_{γ} : this transition populates the 858.499-keV level questionably (1976He11), the level energy difference = 494.20.5.
$x519.1^{@} 4$ 527 464 15	$0.9^{@} 3$	539 800	1/2+	12 326	3/2+	M1 E2	0 0100 16	$ce(K)=6.0.5$: $\alpha(K)exp=0.0083.8$
527.101.13		227.000	~, -	12.520	<i>., .</i>		0.0100 10	$\alpha(\mathbf{K}) = 0.0085 \ 14; \ \alpha(\mathbf{L}) = 0.00117 \ 11; \ \alpha(\mathbf{M}) = 0.000242 \ 21; \ \alpha(\mathbf{N}+) = 6.0 \times 10^{-5} \ 6 \ \alpha(\mathbf{N}) = 7.0 \times 10^{-6} \ 0.0 \times 10^{-7} \ 11 \ \alpha(\mathbf{M}) = 0.000242 \ 10^{-7} \ 11^{-7} \ 11 \ 10^{-7} \ 11^{-$
534.796 10	2.00 7	1112.344	3/2+,5/2+,7/2+	577.553	7/2+	M1,E2	0.0097 15	$\alpha(N)=5.2\times10^{-5} 5; \ \alpha(O)=7.9\times10^{-6} 9; \ \alpha(P)=5.4\times10^{-7} 11$ $ce(K)=3.7 4; \ \alpha(K)exp=0.0082 9$ $\alpha(K)=0.0083 14; \ \alpha(L)=0.00113 11; \ \alpha(M)=0.000233 21;$

				¹³³ La	¹³³ La ε decay (3.912 h)		1976He11,19	980VyZZ (continued)
						$\gamma(^{133}$	Ba) (continued	<u>)</u>
${\rm E}_{\gamma}^{\ddagger}$	Ι _γ ‡ &	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$lpha^\dagger$	Comments
^x 540.45 <i>3</i> 556.03 22	0.553 28 5.7 12	858.499	3/2+	302.395	3/2+	M1,E2	0.0088 14	$\begin{array}{c} \alpha(\mathrm{N}+)=5.8\times10^{-5}\ 6\\ \alpha(\mathrm{N})=5.0\times10^{-5}\ 5;\ \alpha(\mathrm{O})=7.6\times10^{-6}\ 9;\ \alpha(\mathrm{P})=5.2\times10^{-7}\ 11\\ \mathrm{ce}(\mathrm{K})=0.7\ 3;\ \alpha(\mathrm{K})\mathrm{exp}=0.006\ 3\\ \mathrm{ce}(\mathrm{K})=8.3\ 8;\ \mathrm{ce}(\mathrm{L})=0.7\ 3;\ \alpha(\mathrm{K})\mathrm{exp}=0.0065\ 14;\ \alpha(\mathrm{L})\mathrm{exp}=0.0006\ 3\\ \alpha(\mathrm{K})=0.0075\ 13;\ \alpha(\mathrm{L})=0.00102\ 11;\ \alpha(\mathrm{M})=0.000210\ 20;\\ \alpha(\mathrm{N}+)=5.2\times10^{-5}\ 6\\ \alpha(\mathrm{N})=0.0005\ 6\ 0;\ \alpha(\mathrm{N})=0.000210\ 20;\\ \alpha(\mathrm{N}+)=5.2\times10^{-5}\ 6\\ \alpha(\mathrm{N})=0.00005\ 10^{-5}\ 6\ 0;\ \alpha(\mathrm{N})=0.000210\ 20;\\ \alpha(\mathrm{N}+)=5.2\times10^{-5}\ 6\\ \alpha(\mathrm{N})=0.000000000\ 10^{-5}$
560.28 21	0.73 21	862.80	$(7/2)^+$	302.395	3/2+			$\alpha(N)=4.5\times10^{-5} 5; \ \alpha(O)=6.8\times10^{-6} 8; \ \alpha(P)=4.7\times10^{-7} 10$
565.231 20	21.6 8	577.553	7/2+	12.326	3/2+	E2	0.00708 10	ce(K)=34.8 <i>13</i> ; α (K)exp= 0.0072 <i>4</i> α (K)=0.00598 <i>9</i> ; α (L)=0.000872 <i>13</i> ; α (M)=0.000181 <i>3</i> ; α (N+)=4.49×10 ⁻⁵ 7
567.26 4	8.4 4	858.499	3/2+	291.186	5/2+	M1,E2	0.0083 14	$\alpha(N)=3.87\times10^{-5} 6; \ \alpha(O)=5.78\times10^{-6} 8; \ \alpha(P)=3.63\times10^{-7} 5$ Mult.: E2,M1 from conversion data. M1 ruled out from placement in the level scheme. ce(K)=9.7 6; \ \alpha(K)exp=0.0051 4 \alpha(K)=0.0071 12; \ \alpha(L)=0.00096 10; \ \alpha(M)=0.000199 20; \alpha(N+)=5.0\times10^{-5} 6
571.9 <i>3</i>	1.08 10	862.80	$(7/2)^+$	291.186	5/2+	M1,E2	0.0082 13	$\alpha(N)=4.3\times10^{-5} 5; \ \alpha(O)=6.5\times10^{-6} 8; \ \alpha(P)=4.5\times10^{-7} 9$ ce(K)=1.2 3; $\alpha(K)$ exp=0.0050 13 $\alpha(K)=0.0070 12; \ \alpha(L)=0.00094 10; \ \alpha(M)=0.000195 20;$
581.39 8	0.48 5	1211.792	3/2+,5/2+	630.567	5/2+	M1,E2	0.0078 13	$\alpha(N+)=4.9\times10^{-3} \ 6$ $\alpha(N)=4.2\times10^{-5} \ 5; \ \alpha(O)=6.3\times10^{-6} \ 8; \ \alpha(P)=4.4\times10^{-7} \ 9$ $ce(K)=0.98 \ 30; \ \alpha(K)exp=0.0083 \ 30$ $\alpha(K)=0.0067 \ 12; \ \alpha(L)=0.00090 \ 10; \ \alpha(M)=0.000186 \ 20; \ \alpha(N+)=4.7\times10^{-5} \ 6$
								$\alpha(N)=4.0\times10^{-5}$ 5; $\alpha(O)=6.1\times10^{-6}$ 8; $\alpha(P)=4.2\times10^{-7}$ 9 E _w : poor fit, the level energy difference = 581.224 14.
584.734 10	7.01 23	887.134	5/2+	302.395	3/2+	M1+E2	0.0077 13	Mult.: M1,(E2) in 1983JoZX. ce(K)=9.8 3; α (K)exp=0.0063 3 α (K)=0.0066 12; α (L)=0.00089 10; α (M)=0.000183 20; α (N+)=4.6×10 ⁻⁵ 6
592.22 5	1.30 8	883.39	9/2+	291.186	5/2+	E2	0.00626 9	$\alpha(N)=3.9\times10^{-5} 5; \ \alpha(O)=6.0\times10^{-6} 8; \ \alpha(P)=4.2\times10^{-7} 9$ $ce(K)=2.0 5; \ \alpha(K)exp=0.0068 \ 18$ $\alpha(K)=0.00530 \ 8; \ \alpha(L)=0.000764 \ 11; \ \alpha(M)=0.0001586 \ 23;$ $\alpha(N+)=3.93\times10^{-5} 6$
595.94 9	15.9 5	887.134	5/2+	291.186	5/2+	M1(+E2)	0.0074 12	 α(N)=3.39×10⁻⁵ 5; α(O)=5.07×10⁻⁶ 8; α(P)=3.23×10⁻⁷ 5 Mult.: E2,M1 from conversion data. M1 ruled out from placement in level scheme. ce(K)=28.4 11; ce(L)=5.0 10; α(K)exp=0.0079 5; α(L)exp=0.0014 3 α(K)=0.0063 11; α(L)=0.00085 10; α(M)=0.000174 19;

						122		
						γ ⁽¹³³ Ba) (c	ontinued)	
E_{γ}^{\ddagger}	I_{γ} [‡] &	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
X604 27 22	0.12.5							α (N+)=4.4×10 ⁻⁵ 5 α (N)=3.8×10 ⁻⁵ 5; α (O)=5.7×10 ⁻⁶ 8; α (P)=4.0×10 ⁻⁷ 8
618.241 <i>11</i>	32.9 <i>12</i>	630.567	5/2+	12.326	3/2+	M1	0.00781 11	ce(K)=52.7 20; ce(L)=6.5 3; α (K)exp=0.0074 4; α (L)exp=0.00089 5 α (K)=0.00673 10; α (L)=0.000859 12; α (M)=0.0001764 25;
								α (N+)=4.44×10 ⁻⁵ α (N)=3.81×10 ⁻⁵ 6; α (O)=5.85×10 ⁻⁶ 9; α (P)=4.34×10 ⁻⁷ 6
621.542 14	21.5 3	923.955	5/2+	302.395	3/2+	M1,E2	0.0066 11	$ce(K)=24$ 5; $ce(L)=4.1$ 4; $\alpha(K)exp=0.0049$ 11; $\alpha(L)exp=0.00085$ 9
								$\alpha(K)=0.0057 \ 10; \ \alpha(L)=0.00076 \ 9; \ \alpha(M)=0.000156 \ 18; \ \alpha(N+)=3.9\times10^{-5} \ 5$
630.578 25	5.6 2	630.567	5/2+	0.0	1/2+	E2	0.00533 8	$\alpha(N)=3.4\times10^{-5} 4; \ \alpha(O)=5.1\times10^{-6} 7; \ \alpha(P)=3.6\times10^{-7} 8$ $ce(K)=5.6 4; \ \alpha(K)exp=0.0045 4$ $\alpha(K)=0.00452 7; \ \alpha(L)=0.000643 9; \ \alpha(M)=0.0001332 19;$ $\alpha(N+)=3.31\times10^{-5} 5$
632.765 8	39.0 12	923.955	5/2+	291.186	5/2+	M1	0.00738 11	$\alpha(N)=2.85\times10^{-5}$ 4; $\alpha(O)=4.27\times10^{-6}$ 6; $\alpha(P)=2.76\times10^{-7}$ 4 ce(K)=59 3; ce(L)=8.3 5; ce(M)=1.3 4 $\alpha(K)\exp=0.0067$ 4; $\alpha(L)\exp=0.00095$ 6; $\alpha(M)\exp=0.00015$ 5 $\alpha(K)=0.00636$ 9; $\alpha(L)=0.000812$ 12; $\alpha(M)=0.0001666$ 24;
								$\alpha(N+)=4.19\times10^{-5} 6$ $\alpha(N)=3.60\times10^{-5} 5: \alpha(O)=5.53\times10^{-6} 8: \alpha(P)=4.10\times10^{-7} 6$
653.04 11	0.41 7	1329.316	5/2+	676.486	3/2+,5/2+			
664.21 [@] 13	3.77 [@] 10	676.486	3/2+,5/2+	12.326	3/2+	M1+E2	0.0056 10	ce(K)=4.0 9; α (K)exp=0.0047 11 α (K)=0.0048 9; α (L)=0.00064 9; α (M)=0.000132 17; α (N+)=3.3×10 ⁻⁵ 5
								$\alpha(N)=2.8\times10^{-5} 4$; $\alpha(O)=4.3\times10^{-6} 6$; $\alpha(P)=3.0\times10^{-7} 6$ E _{γ} : level energy difference is 664.155 <i>12</i> ; 664.009 <i>23</i> in 1980VyZZ.
671.997 <i>17</i>	1.4 3	1211.792	3/2+,5/2+	539.800	1/2+	M1,E2	0.0055 10	ce(K)=1.3 3; α (K)exp=0.0041 13 α (K)=0.0047 9; α (L)=0.00062 8; α (M)=0.000128 16; α (N+)=3.2×10 ⁻⁵ 5
676.47 2	1.1 3	676.486	3/2+,5/2+	0.0	1/2+	M1,E2	0.0054 9	$\alpha(N)=2.8\times10^{-5} 4; \ \alpha(O)=4.2\times10^{-6} 6; \ \alpha(P)=3.0\times10^{-7} 6$ ce(K)=1.1 3; \alpha(K)exp=0.0044 17 $\alpha(K)=0.0046 8; \ \alpha(L)=0.00061 8; \ \alpha(M)=0.000126 16;$ $\alpha(N+)=3.1\times10^{-5} 5$
$x_{682,0}^{@}$ 5	0.00@ 5							$\alpha(N)=2.7\times10^{-5} 4; \ \alpha(O)=4.1\times10^{-6} 6; \ \alpha(P)=2.9\times10^{-7} 6$
$x_{684.3}^{a}$ 5	0.09 - 5 0.08° 5							

 ∞

¹³³ La ε decay (3.912 h)							976He11,198	0VyZZ (continued)
						γ (¹³³ Ba) (continued)	
Eγ‡	I_{γ} [‡] &	E _i (level)	${ m J}^{\pi}_i$	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
^x 689.5 [@] 3 719.44 <i>14</i> 722.01 <i>15</i>	0.10 [@] 5 0.14 3 0.127 23	1021.584 1352.76	3/2 ⁺ 7/2 ⁺	302.395 630.567	3/2 ⁺ 5/2 ⁺			
733.63 ^b 10	0.094 15	1620.56	5/2+	887.134	5/2+			ce(K)=0.26 8; α (K)exp=0.012 4 E _y : poor fit: the level energy difference is equal to 733.36 3. Mult : α (K)exp value does not correspond to mult =D or F2
751.753 15	1.96 7	1329.316	5/2+	577.553	7/2+	M1	0.00488 7	ce(K)=1.9 4; α (K)exp=0.0044 8 α (K)=0.00421 6; α (L)=0.000534 8; α (M)=0.0001095 16; α (N+)=2.76×10 ⁻⁵ 4 (D) 2.26×10 ⁻⁵ 4 (D) 2.64×10 ⁻⁶ 5 (D) 2.71×10 ⁻⁷ 4
775.31 18	0.109 25	1352.76	7/2+	577.553	7/2+	M1	0.00453 7	$\begin{aligned} \alpha(N) &= 2.56 \times 10^{-4} ; \ \alpha(O) &= 5.64 \times 10^{-5} ; \ \alpha(P) &= 2.71 \times 10^{-4} \\ ce(K) &= 0.15 5; \ \alpha(K) exp = 0.006 3 \\ \alpha(K) &= 0.00391 6; \ \alpha(L) &= 0.000495 7; \ \alpha(M) &= 0.0001017 15; \\ \alpha(N+) &= 2.56 \times 10^{-5} 4 \\ \alpha(N) &= 2.20 \times 10^{-5} 3; \ \alpha(O) &= 3.38 \times 10^{-6} 5; \ \alpha(P) &= 2.51 \times 10^{-7} 4 \end{aligned}$
802.3 [@] 4 809.976 <i>19</i>	0.12 [@] 6 1.69 6	1689.74 1112.344	3/2 ⁺ ,5/2,7/2 ⁺ 3/2 ⁺ ,5/2 ⁺ ,7/2 ⁺	887.134 302.395	5/2+ 3/2+	M1,E2	0.0035 6	ce(K)=1.0 2; ce(L)=0.16 4; α (K)exp=0.0026 6; α (L)exp=0.00043 11 α (K)=0.0030 6; α (L)=0.00039 6; α (M)=8.0×10 ⁻⁵ 12; α (N+)=2.0×10 ⁻⁵ 3
821.13 3	0.50 3	1112.344	3/2+,5/2+,7/2+	291.186	5/2+	M1	0.00395 6	$\alpha(N)=1.73\times10^{-5} 25; \ \alpha(O)=2.6\times10^{-5} 4; \ \alpha(P)=1.9\times10^{-7} 4$ $ce(K)=0.405; \ \alpha(K)exp=0.00365$ $\alpha(K)=0.003415; \ \alpha(L)=0.0004326; \ \alpha(M)=8.86\times10^{-5} 13;$ $\alpha(N+)=2.23\times10^{-5} 4$ $\alpha(N)=1.01\times10^{-5} 3; \ \alpha(O)=2.04\times10^{-6} 5; \ \alpha(P)=2.10\times10^{-7} 3$
846.183 <i>15</i>	18.9 6	858.499	3/2+	12.326	3/2+	M1,E2	0.0032 6	$\begin{array}{l} \alpha(N)=1.91\times10^{-5} \ 3, \ \alpha(O)=2.94\times10^{-5} \ 3, \ \alpha(P)=2.19\times10^{-5} \ 3 \\ \alpha(K)=10 \ 3; \ ce(L)=1.0 \ 3; \ ce(M)=0.17 \ 8 \\ \alpha(K)\exp=0.0024 \ 8; \ \alpha(L)\exp=0.00024 \ 8; \ \alpha(M)\exp=0.00004 \ 2 \\ \alpha(K)=0.0027 \ 5; \ \alpha(L)=0.00035 \ 5; \ \alpha(M)=7.2\times10^{-5} \ 11; \\ \alpha(N+)=1.8\times10^{-5} \ 3 \\ \alpha(N)=1.56\times10^{-5} \ 23; \ \alpha(O)=2.4\times10^{-6} \ 4; \ \alpha(P)=1.7\times10^{-7} \ 4 \end{array}$
848.4 ^{@b} 3 850.43 10	0.34 [@] 7 0.97 11	1706.94 862.80	3/2,5/2 ⁺ (7/2) ⁺	858.499 12.326	3/2 ⁺ 3/2 ⁺	E2	0.0031 6	ce(K)=1.0 3; α (K)exp=0.005 2 (1966Ha23) α (K)=0.0027 5; α (L)=0.00035 5; α (M)=7.1×10 ⁻⁵ 10; α (N+)=1.8×10 ⁻⁵ 3 α (N)=1.54×10 ⁻⁵ 22; α (Q)=2.4×10 ⁻⁶ 4; α (P)=1.7×10 ⁻⁷ 4
858.496 <i>15</i>	15.4 5	858.499	3/2+	0.0	1/2+	M1,E2	0.0031 6	$\begin{array}{l} ce(K)=9.0 \ 4; \ ce(L)=0.87 \ 15; \ ce(M)=0.32 \ 11 \\ \alpha(K)exp=0.0026 \ 2; \ \alpha(L)exp=0.00026 \ 5; \ \alpha(M)exp=0.00009 \ 3 \\ \alpha(K)=0.0026 \ 5; \ \alpha(L)=0.00034 \ 5; \ \alpha(M)=7.0\times10^{-5} \ 10; \\ \alpha(N+)=1.8\times10^{-5} \ 3 \end{array}$
874.83 <i>3</i>	1.66 8	887.134	5/2+	12.326	3/2+	M1,E2	0.0029 5	α (N)=1.51×10 ⁻³ 22; α (O)=2.3×10 ⁻⁶ 4; α (P)=1.7×10 ⁻⁷ 4 ce(K)=0.69 10; ce(L)=0.14 4; α (K)exp=0.0019 3; α (L)exp=0.00038

				¹³³ La	ε deca	y (3.912 h)	1976Hel	11,1980VyZZ (continued)
						$\gamma(1)$	³³ Ba) (contin	nued)
E_{γ}^{\ddagger}	Ι _γ ‡&	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
								<i>11</i> $\alpha(K)=0.0025 5; \alpha(L)=0.00032 5; \alpha(M)=6.7\times10^{-5} 10;$ $\alpha(N+)=1.67\times10^{-5} 25$ $\alpha(N)=1.44\times10^{-5} 21; \alpha(O)=2.2\times10^{-6} 4; \alpha(P)=1.6\times10^{-7} 3$
887.164 <i>24</i> x892.29 <i>22</i> x899 38 5	0.88 <i>4</i> 0.14 <i>6</i> 0.30 <i>2</i>	887.134	5/2+	0.0	1/2+			
909.27 8	0.38 2	1211.792	3/2+,5/2+	302.395	3/2+	M1	0.00311 5	ce(K)=0.21 4; α (K)exp=0.0025 5 α (K)=0.00269 4; α (L)=0.000339 5; α (M)=6.95×10 ⁻⁵ 10; α (N+)=1.749×10 ⁻⁵ 25 α (N)=1.501×10 ⁻⁵ 21; α (Q)=2.31×10 ⁻⁶ 4; α (R)=1.724×10 ⁻⁷ 25
911.647 <i>13</i>	3.88 16	923.955	5/2+	12.326	3/2+	M1,E2	0.0027 5	$\begin{array}{c} \alpha(N) = 1.501 \times 10^{-2.1}, \alpha(O) = 2.51 \times 10^{-4}, \alpha(1) = 1.724 \times 10^{-2.5} \\ ce(K) = 1.9 \ 4; \ \alpha(K) exp = 0.0022 \ 5 \\ \alpha(K) = 0.0023 \ 4; \ \alpha(L) = 0.00029 \ 5; \ \alpha(M) = 6.1 \times 10^{-5} \ 9; \ \alpha(N+) = 1.52 \times 10^{-5} \\ 22 \\ \alpha(N) = 1.20 \times 10^{-5} \ 10^{-5} \ 10^{-5} \ \alpha(N) = 2.0 \times 10^{-5} \ 20^{-5} \ \alpha(N) = 1.41 \times 10^{-7} \ 20^{-5} \ \alpha(N) = 1.52 \times 10^{-5} \ \alpha($
920.623 24	0.77 4	1211.792	3/2+,5/2+	291.186	5/2+	M1	0.00302 5	$\begin{aligned} \alpha(N) &= 1.50 \times 10^{-5} \ 19; \ \alpha(O) &= 2.0 \times 10^{-5} \ 3; \ \alpha(P) &= 1.4 \times 10^{-7} \ 3 \end{aligned}$ $ce(K) &= 0.51 \ 10; \ \alpha(K) exp = 0.0029 \ 6 \\ \alpha(K) &= 0.00261 \ 4; \ \alpha(L) &= 0.000329 \ 5; \ \alpha(M) &= 6.75 \times 10^{-5} \ 10; \\ \alpha(N+) &= 1.699 \times 10^{-5} \ 24 \\ \alpha(N) &= 1.458 \times 10^{-5} \ 21; \ \alpha(O) &= 2.24 \times 10^{-6} \ 4; \ \alpha(P) &= 1.675 \times 10^{-7} \ 24 \end{aligned}$
923.9 ^{<i>@</i>} 2 932.98 7	0.90 [@] 5 0.51 4	923.955 1563.399	5/2 ⁺ 5/2 ⁺	0.0 630.567	1/2 ⁺ 5/2 ⁺	M1	0.00293 5	ce(K)=0.34 9; α (K)exp=0.0030 8 α (K)=0.00253 4; α (L)=0.000319 5; α (M)=6.54×10 ⁻⁵ 10; α (N+)=1.646×10 ⁻⁵ 23 α (N)=1.413×10 ⁻⁵ 20; α (O)=2.17×10 ⁻⁶ 3; α (P)=1.623×10 ⁻⁷ 23 E _{γ} : poor fit: the level energy difference is equal to 932.831 25.
^x 981.06 8 ^x 992.99 9	0.23 2 0.25 2							
1009.31 4	2.80 13	1021.584	3/2+	12.326	3/2+	M1	0.00244 4	ce(K)=1.28 <i>13</i> ; ce(L)=0.16 <i>4</i> ; α (K)exp=0.0021 <i>2</i> ; α (L)exp=0.00026 <i>7</i> α (K)=0.00211 <i>3</i> ; α (L)=0.000265 <i>4</i> ; α (M)=5.44×10 ⁻⁵ <i>8</i> ; α (N+)=1.369×10 ⁻⁵ <i>20</i> α (N)=1.175×10 ⁻⁵ <i>17</i> ; α (Q)=1.81×10 ⁻⁶ <i>3</i> ; α (P)=1.352×10 ⁻⁷ <i>19</i>
1021.62 <i>5</i> 1038.18 <i>5</i>	0.215 <i>15</i> 0.27 <i>2</i>	1021.584 1329.316	3/2 ⁺ 5/2 ⁺	0.0 291.186	1/2 ⁺ 5/2 ⁺	M1	0.00229 4	$ce(K)=0.15 \ 4; \ \alpha(K)exp=0.0025 \ 7$ $\alpha(K)=0.00198 \ 3; \ \alpha(L)=0.000248 \ 4; \ \alpha(M)=5.09\times10^{-5} \ 8;$ $\alpha(N+)=1.282\times10^{-5} \ 18$
1043.02 4	0.33 <i>3</i>	1620.56	5/2+	577.553	7/2+	M1	0.00227 4	$\begin{aligned} \alpha(\text{N}) &= 1.100 \times 10^{-5} \ 16; \ \alpha(\text{O}) &= 1.693 \times 10^{-6} \ 24; \ \alpha(\text{P}) &= 1.266 \times 10^{-7} \ 18 \\ \text{ce}(\text{K}) &= 0.16 \ 4; \ \alpha(\text{K}) \text{exp} = 0.0022 \ 6 \\ \alpha(\text{K}) &= 0.00196 \ 3; \ \alpha(\text{L}) &= 0.000246 \ 4; \ \alpha(\text{M}) &= 5.04 \times 10^{-5} \ 7; \end{aligned}$

 $^{133}_{56}\mathrm{Ba}_{77}$ -10

			133	³ La ε deca	y (3.9 1	2 h) 197	6He11,1980Vy	ZZ (continued)
						$\gamma(^{133}Ba)$ (continued)	
${\rm E_{\gamma}}^{\ddagger}$	I_{γ} [‡] &	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$lpha^\dagger$	Comments
								α (N+)=1.268×10 ⁻⁵ <i>18</i> α (N)=1.088×10 ⁻⁵ <i>16</i> ; α (O)=1.674×10 ⁻⁶ <i>24</i> ; α (P)=1.253×10 ⁻⁷ <i>18</i>
1061.56 22	3.38 23	1352.76	7/2+	291.186	5/2+	M1+E2	0.0019 3	ce(K)=1.09 <i>10</i> ; ce(L)=0.22 <i>4</i> ; α (K)exp=0.0015 <i>2</i> ; α (L)exp=0.00029 <i>6</i> α (K)=0.0016 <i>3</i> ; α (L)=0.00021 <i>3</i> ; α (M)=4.2×10 ⁻⁵ <i>6</i> ; α (N+)=1.07×10 ⁻⁵ <i>16</i> α (N)=9.2×10 ⁻⁶ <i>13</i> ; α (O)=1.40×10 ⁻⁶ <i>21</i> ; α (P)=1.03×10 ⁻⁷ <i>18</i>
1080.9 [@] 4 1099.99 2	0.13 [@] 2 7.7 4	1620.56 1112.344	5/2 ⁺ 3/2 ⁺ ,5/2 ⁺ ,7/2 ⁺	539.800 12.326	1/2 ⁺ 3/2 ⁺	E2	0.001477 21	E _γ : 1081.04 <i>11</i> in 1980VyZZ. ce(K)=2.4 2; ce(L)=0.26 3; ce(M)=0.11 3 α (K)exp=0.0014 2; α (L)exp=0.00015 2; α (M)exp=0.00006 2 α (K)=0.001270 <i>18</i> ; α (L)=0.0001646 23; α (M)=3.38×10 ⁻⁵ 5; α (N+)=8.5×10 ⁻⁶ 4 α (N)=7.28×10 ⁻⁶ <i>11</i> ; α (O)=1.109×10 ⁻⁶ <i>16</i> ; α (P)=7.89×10 ⁻⁸ <i>11</i>
1111.9 [@] 4	$0.09^{@}$ 4	1112.344	3/2+,5/2+,7/2+	0.0	1/2+			E_{γ} : this transition questionably populates the g.s. in 1976He11, the level energy difference = 1112.344 <i>12</i> .
1111.9 [@] 4	0.09 [@] 4	1689.74	3/2+,5/2,7/2+	577.553	7/2+			E_{γ} : this transition questionably populates the 577.553-keV level (1976He11), the level energy difference = 1112.19 6.
^x 1175.98 7 ^x 1181.99 <i>13</i> ^x 1192.3 [@] 3	0.19 2 0.046 <i>13</i> 0.006 [@] 3							
1199.447 22	0.83 6	1211.792	3/2+,5/2+	12.326	3/2+	M1	0.001653 24	ce(K)=0.28 3; α (K)exp=0.0015 2 α (K)=0.001423 20; α (L)=0.0001780 25; α (M)=3.65×10 ⁻⁵ 6; α (N+)=1.517×10 ⁻⁵ α (N)=7.88×10 ⁻⁶ 11; α (O)=1.213×10 ⁻⁶ 17; α (P)=9.09×10 ⁻⁸ 13; α (IPE)=5.99×10 ⁻⁶ 9
1211.760 25	1.76 <i>12</i>	1211.792	3/2+,5/2+	0.0	1/2+	M1,E2	0.00142 21	$\begin{aligned} &\alpha(\text{R}^{-1}) = 5.55 \times 10^{-5} \text{ gmm} = 0.0022 \ 7 \ (1966\text{Ha23}) \\ &\alpha(\text{K}) = 0.00122 \ 18; \ \alpha(\text{L}) = 0.000154 \ 21; \ \alpha(\text{M}) = 3.2 \times 10^{-5} \ 5; \\ &\alpha(\text{N}+) = 1.55 \times 10^{-5} \ 10 \\ &\alpha(\text{N}) = 6.8 \times 10^{-6} \ 9; \ \alpha(\text{O}) = 1.04 \times 10^{-6} \ 15; \ \alpha(\text{P}) = 7.7 \times 10^{-8} \ 13; \\ &\alpha(\text{IPF}) = 7.58 \times 10^{-6} \ 19 \end{aligned}$
x1219.2 3 1230.06 9 1241.04 15 1261.01 3 1283.952 24	0.09 2 0.16 2 0.092 16 0.98 7 2.55 17	1532.40 1532.40 1563.399 1283.959	3/2,5/2,7/2 ⁺ 3/2,5/2,7/2 ⁺ 5/2 ⁺ 3/2 ⁻	302.395 291.186 302.395 0.0	3/2 ⁺ 5/2 ⁺ 3/2 ⁺ 1/2 ⁺	(E1)	0.000555 8	$\alpha(K)=0.000419\ 6$; $\alpha(L)=5.10\times10^{-5}\ 8$; $\alpha(M)=1.041\times10^{-5}\ 15$;
					,	、 /		$\alpha(N+)=7.49\times10^{-5} II \alpha(N)=2.24\times10^{-6} 4; \ \alpha(O)=3.44\times10^{-7} 5; \ \alpha(P)=2.56\times10^{-8} 4;$

From ENSDF

¹³³ La ε decay (3.912 h) 1976He11,1980VyZZ (continued)										
$\gamma(^{133}\text{Ba})$ (continued)										
+ + k										
E_{γ}^{4}	$I_{\gamma}^{\downarrow \alpha}$	E_i (level)	J_i^{π}	E_f	J_f^π	Comments				
						α (IPF)=7.22×10 ⁻⁵ 11				
						Mult.: this transition populates the $1/2^+$, g.s.; in ¹³² Ba(pol d,p) L=1 for the 1283.9-keV state. Comparison of I γ and ce for 1283.9- and 1199.5-keV (M1) transitions point at mult.=(E1) for the former.				
1317.24 ^b 5	0.92 7	1329.316	5/2+	12.326	$3/2^{+}$	E_{γ} : poor fit: the level energy difference is equal to 1316.973 17.				
1329.33 ^{<i>a</i>} 5	0.34 3	1329.316	5/2+	0.0	1/2+	E_{γ} : other transition questionably populates the 291.186-keV level from the 1620.56-keV level (1976He11).				
1329.33 ^{<i>a</i>} 5	0.34 3	1620.56	5/2+	291.186	5/2+	E_{γ} : questionable population in 1976He11, the level energy difference = 1329.38 4; other transition populates the g.s. from the 1329.3-keV level.				
1340.2 [@] 3	0.18 [@] 3	1352.76	7/2+	12.326	$3/2^{+}$					
1387.41 7	0.136 15	1689.74	3/2+,5/2,7/2+	302.395	$3/2^{+}$					
1398.49 8	0.19 2	1689.74	3/2+,5/2,7/2+	291.186	$5/2^{+}$					
1404.7 ^{^w} 4	0.117 [@] 17	1706.94	3/2,5/2+	302.395	$3/2^{+}$					
1415.9 [@] 3	0.158 [@] 18	1706.94	3/2,5/2+	291.186	5/2+					
1467.28 13	0.074 10	1769.70	3/2,5/2+	302.395	3/2+					
14/8.72 9	0.069 7	1769.70	$3/2,5/2^+$	291.186	$5/2^+$	E_{γ} : poor fit: the level energy difference is equal to 1478.51 5.				
1510.34 20	0.07 2	1528.04	$3/2, 5/2^+$ $3/2, 5/2^+$	12.320	$\frac{3}{2^+}$					
x1540.01.20	0.06 1	1526.04	5/2,5/2	0.0	1/2					
1550.97 5	0.41 3	1563.399	$5/2^{+}$	12.326	$3/2^{+}$					
1563.36 6	0.36 3	1563.399	5/2+	0.0	$1/2^{+}$					
^x 1581.66 <i>12</i>	0.12 2									
x1592.33 13	0.030 8									
x1595.6 ^{@b} 5	0.3 2									
1608.35 [@] 13	1.67 [@] 11	1620.56	5/2+	12.326	$3/2^{+}$	E_{γ} : the level energy difference is equal to 1608.24 4; 1608.09 3 in 1980VyZZ.				
1620.9 [@] 7	$0.05^{\textcircled{0}}2$	1620.56	5/2+	0.0	$1/2^{+}$					
^x 1659.6 [@] 5	$0.05^{\textcircled{0}}2$									
1677.3 [@] 3	0.19 [@] 3	1689.74	3/2+,5/2,7/2+	12.326	$3/2^{+}$	E_{γ} : 1677.01 9 in 1980VyZZ.				
1694.4 [@] 4	0.178 [@] 16	1706.94	$3/2, 5/2^+$	12.326	$3/2^{+}$					
1706.7 [@] 4	0.038 [@] 10	1706.94	3/2,5/2+	0.0	$1/2^{+}$					
$x_{1720.2}^{@} 2$	$0.03^{\textcircled{0}}{2}$		1 / 1		,					
1757.06 20	0.063 10	1769.70	3/2,5/2+	12.326	$3/2^{+}$					
1769.60 7	0.25 2	1769.70	3/2,5/2+	0.0	$1/2^{+}$					
^x 1782.9 [@] 5	0.05 [@] 3									
x1805.83 10	0.055 6									
1818.1 [@] 4	0.05 [@] 1	1830.22	3/2,5/2+	12.326	3/2+					

 γ ⁽¹³³Ba) (continued)</sup>

Eγ‡	I_{γ} ^{‡&}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$
1830.21 [@] 3	0.06 [@] 2	1830.22	3/2,5/2+	0.0 1/2+
^x 1851.7 ^{@b} 6	$0.02^{@}$ 1			
$x_{1886.7}^{@b} 4$	$0.03^{\textcircled{0}}{1}$			

[†] Additional information 1.

[‡] From 1980VyZZ, except as noted. Since some of the quoted uncertainties are unrealistically small, the evaluators added 3% in quadrature to the uncertainties of 1980VyZZ. There are systematic discrepancies between Iγ values measured by 1976He11 and 1980VyZZ.

[#] From $\alpha(K)\exp$, $\alpha(L)\exp$ and $\alpha(M)\exp$. Ice are from 1983JoZX, except as noted; $\alpha(\exp)=Ice/I\gamma$ for 302.35 γ (mult.=M1 in 1983JoZX, 1976He11) is normalized to $\alpha(K)=0.0408$ by evaluators.

[@] From 1976He11.

[&] For absolute intensity per 100 decays, multiply by 0.0244 10.

^a Multiply placed.

^b Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

Legend

_ -

Log ft

7.98

7.60

7.75

7.63

7.25

7.41

8.42

8.48

7.13

6.89

7.13

7.51

<u>I</u>£

0.0027

0.0111

0.0120

0.0177

0.061

0.055

0.0061

0.0054

0.64

1.16

0.95

0.43

¹³³La ε decay (3.912 h) 1976He11,1980VyZZ

Decay Scheme

Intensities: Relative I_{γ} $\begin{array}{l} I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ \gamma \text{ Decay (Uncertain)} \end{array}$ 0.0 3.912 h 8 $5/2^{+}$ Qε=2059 28 $\%\varepsilon + \%\beta^+ = 100$ ¹³³₅₇La₇₆ $I\beta^+$ 3/2,5/2+ 1830.22 3/2,5/2+ 1769.70 3/2,5/2⁺ 3/2⁺,5/2,7/2⁺ .0.5, 1706.94 1689.74 5/2+ 1620.56 15.93 268 5/2⁺ 3/2,5/2,7/2⁺ 1563.399 1532.40 1528.64 3/2,5/2+ 1 $\frac{5/2^+}{3/2^+}$ 887.134 ۲ 858.499 1 5/2+ 630.567 0.0025 7/2+ 577.553 0.0019 $1/2^{+}$ 539.800

¹³³₅₆Ba₇₇

14

¹³³La ε decay (3.912 h) 1976He11,1980VyZZ

¹³³La ε decay (3.912 h) 1976He11,1980VyZZ

¹³³La ε decay (3.912 h) 1976He11,1980VyZZ

Decay Scheme (continued)

¹³³₅₆Ba₇₇