Adopted Levels, Gammas

	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	ENSDF	28-Feb-2018

 $Q(\beta^{-})=3089 \ 3; \ S(n)=7353 \ 4; \ S(p)=15810 \ 3; \ Q(\alpha)=-11730 \ 8 2017Wa10$

S(2n)=12557.0 27, S(2p)=30007 22 (2017Wa10).

Mass measurement (Penning-trap spectrometer): 2013Va12, 2012Ha25, 2008Dw01, 2005Si34.

2007Kl05, 2005Ad29 (also 2007Kl06): ⁹Be(²³⁸U,X), E=500 MeV/nucleon. Measured pygmy dipole resonance (PDR) strength,

neutron skin thickness, symmetry parameters. Energies of PDR and GDR extracted as 9.8 MeV 7 (FWHM<2.5 MeV), and 16.1 MeV 7 (FWHM=4.7 MeV 21).

2015Ko05: deduced energy of the $i_{13/2}$ neutron single-particle energy as 2669 keV 70 in the ¹³²Sn core potential.

Charge radius, hyperfine structure, isotope shifts measured by LASER spectroscopy: 2002Le30, 2005Le34.

Additional information 1.

Theoretical nuclear structure calculations for ¹³²Sn: consult Nuclear Science References (NSR) database at www.nndc.bnl.gov/nsr/ for about 430 articles.

¹³²Sn Levels

Cross Reference (XREF) Flags

			A 132 B 132 C 133	² In β^- decay (0.200 s) D ²⁴⁸ Cm SF decay ² Sn IT decay (2.080 μ s) E Coulomb excitation ³ In β^- n decay (165 ms)
E(level) [‡]	$J^{\pi \#}$	T _{1/2} †	XREF	Comments
0.0	0+	39.7 s 8	ABCDE	%β ⁻ =100 The rms charge radius (<r<sup>2>)^{1/2}: 4.7093 fm 76 (2013An02 evaluation). See also 2009An12 for trends in nuclear radii. Measured isotope shift=1.140 GHz 6 (relative to ¹²⁰Sn, 2005Le34). Measured δ<r<sup>2>(¹²⁰Sn, ¹³²Sn)=0.534 fm² 69 (2005Le34). Deduced charge radius=4.709 fm 7 (2005Le34). J^π: hyperfine structure measurement (2005Le34) shows only one peak consistent with J=0. T_{1/2}: weighted average of 38.0 s 8 (1975Ba36), 41.0 s 15 (1974Gr29), 41.1 s 13 (1972Iz01,1978Iz03), 40 s 1 (1972Ke20), 39.0 s 10 (1972Na10), 40.6 s 8 (1972Nu04). Others: ≈47 s (1974Fo06), 1970Li14, 60 s 10 (1966St25), 50 s 10 (1963Gr13), 2.2 min (1956Pa20). 2011Jo08, 2010Jo03: deduced doubly closed shell nature of ¹³²Sn in 210/132 = 1132 n. F (200 M V)</r<sup></r<sup>
4041.20 ^{&} <i>15</i>	2+	2.4 fs +9-5	AB DE	B(E2) \uparrow =0.11 3 J ^{π} : γ to 0 ⁺ ; level is Coulomb excited from 0 ⁺ g.s. T _{1/2} : from B(E2) value. Other: <0.4 ns (from ¹³² Sn IT decay). B(E2) \uparrow : preliminary result from Coulomb excitation (2005Va31 2005Ra09 2004Be56 2004Ra27)
4351.94 <i>14</i>	(3-)	<5.0 ps	A D	J^{π} : (E1) γ to 2 ⁺ , γ to 0 ⁺ ; systematics.
4416.29 ^{&} <i>14</i>	(4^{+})	3.95 ns 13	AB D	J^{π} : (E2) γ to 2^+ ; γ to (3^-) .
4715.91 ^{&} 17 4830.97 ^a 17	(6 ⁺) (4 ⁻)	20.1 ns 5 26.0 ps 5	AB D A D	J^{π} : (E2) γ to (4 ⁺); log <i>ft</i> =6.1 from (7 ⁻). J^{π} : (M1) γ to (3 ⁻); γ to (4 ⁺).
4848.52 [∞] 20	(8+)	2.080 µs 17	AB D	%IT=100 J^{π} : (E2) γ to (6 ⁺); log <i>ft</i> =5.7 from (7 ⁻). $T_{1/2}$: from γ (t) in IT decay; weighted average of 2.15 μ s <i>16</i> (2017Ch51, (132 γ +299 γ +374 γ)(t) in ²³⁵ U(n,F),E=thermal); 2.088 μ s <i>17</i> (2012Ka36) and

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹³²Sn Levels (continued)

E(level) [‡]	J ^{π#}	T _{1/2} †	X	REF	Comments	
					 2.03 μs 4 (1994Fo14). Other: 1.7 μs 2 (1982Ka25). 2017Ch51 measured isomeric ratios as a function of kinetic energy of ¹³²Sn fragments in ²³⁵U(n,F),E=thermal using Lohengrin spectrometer at Grenoble. 	
4885.21 ^{&} 19	(5 ⁺)	<40.0 ps	A	D	J^{π} : γ 's to (4 ⁺) and (6 ⁺); log $f^{1u}t=9.4$ from (7 ⁻).	
4919.00 ^{&} 20 4942.53 ^a 16	(7 ⁺) (5 ⁻)	62.0 ps 7 17.0 ps 5	A A	D D	J^{π} : (M1) γ to (6 ⁺); γ to (8 ⁺); log <i>ft</i> =6.5 from (7 ⁻). J^{π} : (E1) γ to (4 ⁺); γ 's to (3 ⁻) and (6 ⁺).	
5279.5 <mark>&</mark> 11	(9 ⁺)			D	J^{π} : γ to (8^+) .	
5387.89 20	(4 ⁻)		A		J ^{π} : configuration= $\nu(g_{7/2}s_{1/2}^{-1})$; γ from (6 ⁻), γ to (3 ⁻).	
5399.22 [@] 21	(6+)		Α		J^{π} : γ to (6 ⁺); log <i>ft</i> =6.3 from (7 ⁻).	
5478.98 [@] 23	(8 ⁺)		Α		J^{π} : γ to (8 ⁺); log <i>ft</i> =6.2 from (7 ⁻).	
5629.26 [@] 19	(7^{+})	13.0 ps 5	A		J^{π} : γ' s to (6 ⁺) and (8 ⁺); log <i>ft</i> =5.6 from (7 ⁻).	
6173.20 20	(5,6,7)	-	A		J^{π} : γ to (6 ⁺); γ from (6 ⁻).	
6235.9 <i>3</i>	$(6,7,8^+)$		Α		J^{π} : γ to (6 ⁺); log <i>ft</i> =7.0 from (7 ⁻).	
6598.5 <i>3</i>	(6,7 ⁻)		Α		J^{π} : log ft=6.0 from (7 ⁻); γ to (5 ⁻).	
6630.3 <i>3</i>	$(6,7,8^+)$		Α		J^{π} : γ to (6 ⁺), log <i>ft</i> =6.3 from (7 ⁻).	
6709.04 <i>21</i>	(6,7 ⁻)		Α		J^{π} : γ to (5 ⁻), log <i>ft</i> =6.1 from (7 ⁻).	
6896.0 <i>3</i>	(6,7,8)		Α		J^{π} : γ to (7 ⁺); log <i>ft</i> =7.0 from (7 ⁻).	
7211.14 17	(6 ⁻)		Α		J ^{π} : log ft=4.6 from (7 ⁻); γ 's to (5 ⁺) and (7 ⁺); configuration= ν (f _{7/2} g _{7/2}).	
7244.06 20	(7 ⁻)		Α		J^{π} : γ 's to (6 ⁺) and (8 ⁺); log <i>ft</i> =5.6 from (7 ⁻).	
≈7550?			A		Possibly decays by neutrons.	

[†] From $\beta\gamma\gamma$ (t) (1994Fo14) in ¹³²In β^- , unless otherwise stated.

[‡] From least-squares fit to $E\gamma$ data, assuming 0.2 keV uncertainty for $E\gamma$ quoted to nearest tenth of a keV and 1 keV for others. See ¹³²In β^- data set for explanation.

[#] In addition to arguments given under comments, probable shell-model configurations proposed by 1994Fo14 are used to restrict ^{*J*^{π} choices. ^{*@*} Member of configuration= $\nu(g_{7/2}g_{9/2}^{-1})$.}

[&] Member of configuration= $\nu(f_{7/2}h_{11/2}^{-1})$.

^{*a*} Possible member of configuration= $\nu(f_{7/2}d_{3/2}^{-1})$.

 $\gamma(^{132}\text{Sn})$

For transition strengths, uncertainty for gamma-ray branching ratio has been assumed to be 10%, when not stated for levels which deexcite by multiple transitions.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_{f}	J_f^{π} M	lult.	$\alpha^{\#}$	Comments
4041.20	2+	4041.1	100	0.0	0+			B(E2)(W.u.)=5.5 15
4351.94	(3^{-})	310.7	11.0	4041.20 2	2 ⁺ (E	E1)		B(E1)(W.u.)>0.00017
		4351.9	100	0.0 0	0 ⁺ [E	E3]		B(E3)(W.u.)>7.1
4416.29	(4^{+})	64.4	1.3	4351.94 ((3 ⁻) [E	E1]	0.625	$B(E1)(W.u.)=2.66\times10^{-6} 32$
		375.1	100 3	4041.20 2	2 ⁺ (E	E2)	0.01739	B(E2)(W.u.)=0.400 24
		4416.2	17 <i>3</i>	0.0 0	0+ [E	E4]		B(E4)(W.u.)=8.0 15
4715.91	(6^{+})	299.6	100	4416.29 ((4^+) (E	E2)	0.0356	B(E2)(W.u.)=0.292 9
4830.97	(4^{-})	414.6	2.1	4416.29 ((4 ⁺) [E	E1]		$B(E1)(W.u.)=2.90\times10^{-6} 29$
		479.1	100	4351.94 ((3^{-}) (N	M1)		B(M1)(W.u.)=0.0075 8
4848.52	(8^{+})	132.5	100	4715.91 ((6^+) (E	E2)	0.589	B(E2)(W.u.)=0.104 2
								$\alpha(K)=0.456$ 7; $\alpha(L)=0.1071$ 15; $\alpha(M)=0.0217$ 3
								$\alpha(N)=0.00387~6; \alpha(O)=0.000198~3$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{132}\text{Sn})$ (continued)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	evel)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.	α #	Comments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.21 (5	5+)	169.0	20	4715.91	(6^{+})			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- /	469.1	100	4416.29	(4^+)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.00 (7	7 ⁺)	70.4	2.7	4848.52	(8+)	[M1]	1.534	B(M1)(W.u.)=0.0239 26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									α (K)=1.324 <i>19</i> ; α (L)=0.1698 <i>24</i> ; α (M)=0.0333 <i>5</i>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									α (N)=0.00626 9; α (O)=0.000540 8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			88.9 <mark>@</mark>		4830.97	(4 ⁻)	[E3]		
$\alpha(K)=0.0690 \ 10; \ \alpha(L)=0.00865 \ 13; \ \alpha(M)=0.0016 \\ 24 \\ \alpha(N)=0.000319 \ 5; \ \alpha(O)=2.78\times10^{-5} \ 4$			203.1	100	4715.91	(6 ⁺)	(M1)	0.0797	B(M1)(W.u.)=0.0369 37
$\begin{array}{c} 24 \\ \alpha(N)=0.000319 \ 5; \ \alpha(O)=2.78\times10^{-5} \ 4 \\ 4942 \ 53 (5^{-}) \\ 111 \ 5 \\ 91 4830 \ 97 (4^{-}) \\ 111 \\ 0 \ 414 \\ 10 \\ 111 \\ 0 \ 414 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $									$\alpha(K)=0.0690 \ 10; \ \alpha(L)=0.00865 \ 13; \ \alpha(M)=0.001695$
$\alpha(N)=0.0003195; \alpha(O)=2.78 \times 10^{-5} 4$									24
4942.53 (5 ⁻) 111.5 9.1 4830.97 (4 ⁻) [M1] 0.414 B(M1)(W ₁₁)=0.059.8									α (N)=0.000319 5; α (O)=2.78×10 ⁻⁵ 4
	2.53 (5	5-)	111.5	9.1	4830.97	(4 ⁻)	[M1]	0.414	B(M1)(W.u.)=0.069 8
$\alpha(K)=0.357 5; \alpha(L)=0.0455 7; \alpha(M)=0.00893 13$									$\alpha(K)=0.357$ 5; $\alpha(L)=0.0455$ 7; $\alpha(M)=0.00893$ 13
α (N)=0.001679 24; α (O)=0.0001453 21									α (N)=0.001679 24; α (O)=0.0001453 21
226.7 2.8 4715.91 (6 ⁺) [E1] 0.0182 B(E1)(W.u.)= $2.93 \times 10^{-5} 32$			226.7	2.8	4715.91	(6^{+})	[E1]	0.0182	$B(E1)(W.u.)=2.93\times10^{-5} 32$
526.2 100 4416.29 (4 ⁺) (E1) $B(E1)(W,u)=8.4\times10^{-5}$ 9			526.2	100	4416.29	(4^{+})	(E1)		$B(E1)(W.u.) = 8.4 \times 10^{-5} 9$
590.6 6.6 4351.94 (3 ⁻) [E2] B(E2)(W.u.)=0.61 7			590.6	6.6	4351.94	(3-)	[E2]		B(E2)(W.u.)=0.61 7
5279.5 (9 ⁺) 431 100 4848.52 (8 ⁺) E_{v} : from ²⁴⁸ Cm SF decay.	9.5 (9	9+)	431	100	4848.52	(8+)			E_{γ} : from ²⁴⁸ Cm SF decay.
5387.89 (4 ⁻) 1035.8 100 4351.94 (3 ⁻)	7.89 (4	4 ⁻)	1035.8	100	4351.94	(3-)			,
5399.22 (6 ⁺) 683.3 100 4715.91 (6 ⁺)	9.22 (6	6 ⁺)	683.3	100	4715.91	(6^+)			
5478.98 (8 ⁺) 630.5 100 4848.52 (8 ⁺)	8.98 (8	8+)	630.5	100	4848.52	(8+)			
5629.26 (7 ⁺) 230.0 7.1 5399.22 (6 ⁺)	.9.26 (7	7+)	230.0	7.1	5399.22	(6^{+})			
710.3 23 4919.00 (7^+)			710.3	23	4919.00	(7^{+})			
780.8 29 4848.52 (8 ⁺)			780.8	29	4848.52	(8^{+})			
913.3 100 4715.91 (6^+)			913.3	100	4715.91	(6^{+})			
6173.20 (5,6,7) 774.0 20 5399.22 (6 ⁺)	3.20 (5	5,6,7)	774.0	20	5399.22	(6^{+})			
1457.5 100 4715.91 (6 ⁺)			1457.5	100	4715.91	(6^{+})			
$6235.9 (6,7,8^+) 1520.0 100 4715.91 (6^+)$	5.9 (6	6,7,8+)	1520.0	100	4715.91	(6^{+})			
$6598.5 (6,7^{-}) 1656.0 100 4942.53 (5^{-})$	8.5 (6	6,7-)	1656.0	100	4942.53	(5 ⁻)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3 (6	6,7,8+)	1914.4	100	4715.91	(6 ⁺)			
6709.04 (6,7 ⁻) 1766.5 100 4942.53 (5 ⁻)	9.04 (6	6,7 ⁻)	1766.5	100	4942.53	(5^{-})			
$6896.0 (6,7,8) 1977.0 100 4919.00 (7^+)$	6.0 (6	6,7,8)	1977.0	100	4919.00	$('/^{+})$			
7211.14 (6) 502.1 2.9 $6/09.04$ (6,7)	1.14 (6	6)	502.1	2.9	6709.04	(6,7)			
1038.2 3.6 $61/3.20$ (5.6,7)			1038.2	3.6	6173.20	(5,6,7)			
1581.9 3.1 5629.26 ($^{\prime}$)			1581.9	3.1	5629.26	$(/^{+})$			
1823.1 3.1 387.89 (4)			1823.1	3.1	3387.89	(4)			
2208.0 07 4942.35 (5)			2208.0	0/	4942.55	(5)			
2292.0 5.1 4919.00 (7) 2325.8 1.0 4885.21 (5 ⁺)			2292.0 2325 8	3.1 1.0	4919.00	(7) (5^+)			
2525.0 1.7 4005.21 (5) 2380.2 100 4830.07 (Λ^{-})			2323.0	1.9	4003.21	(3^{-})			
2500.2 100 4050.77 (4) 7244 06 (7 ⁻) 1765 1 88 5478 08 (8 ⁺)	4.06 (7	7-)	1765 1	88	4030.97 5478 08	(+) (8^+)			
72 ± 0.00 (7) 1705.1 00 5470.70 (0) 73015 79 4042 53 (5 ⁻)	т.00 (7	, ,	2301.5	00 70	1947 53	(5^{-})			
$2395.4 100 4848.52 (8^+)$			2301.5	100	4848 57	(3^{+})			
2528.2 75 4715.91 (6 ⁺)			2528.2	75	4715.91	(6^+)			

[†] From ¹³²In β^- decay, unless otherwise stated.

[±] Relative photon branching from each level deduced from ¹³²In β^- decay. The uncertainties are expected to be from 5-15%.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{132}_{50}{\rm Sn}_{82}$

4