¹³²Sn IT decay (2.080 μs) 1982Ka25,1980Bj01,2012Ka36

	Hi		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	ENSDF	28-Feb-2018

Parent: ¹³²Sn: E=4847.0 *6*; J^{π} =(8⁺); $T_{1/2}$ =2.080 µs *17*; %IT decay=100.0 ¹³²Sn-%IT decay: %IT=100.

1982Ka25, 1980Bj01: measured $E\gamma$, $I\gamma$, $T_{1/2}$ of isomer.

2012Ka36: isomer produced in ${}^{9}Be({}^{238}U,F)$, with ${}^{238}U$ beam at E=345 MeV/nucleon provided by the RIBF accelerator complex at RIKEN facility. Fission fragments were separated and analyzed by BigRIPS separator, transported to focal plane of ZeroDegree spectrometer and finally implanted in an aluminum stopper. Particle identification was achieved by ΔE -tof-B ρ method. Delayed gamma rays from microsecond isomers were detected by three clover-type HPGe detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, isomer half-life. Comparison with previous studies.

2017Ch51: ²³⁵U(n,F),E=thermal, measured E γ , I γ , half-life of isomer by γ (t). First measurement of isomeric ratios as function of kinetic energy of ¹³²Sn fragments using Lohengrin spectrometer at Grenoble.

¹³²Sn Levels

$J^{\pi \dagger}$	$T_{1/2}$ [‡]	Comments
0^{+}		
2+	<0.4 ns	$T_{1/2}$: from 1980Bj01.
(4^{+})	4.0 ns 3	$T_{1/2}$: other: 2.1 ns 3 (1980Bj01).
(6^{+})	20.2 ns 8	
(8^+)	2.080 µs 17	$T_{1/2}$: from $\gamma(t)$; weighted average of 2.15 μ s 16 (2017Ch51, (132 γ +299 γ +374 γ)(t) in
		235 U(n,F),E=thermal); 2.088 μ s 17 (2012Ka36) and 2.03 μ s 4 (1994Fo14). Other: 1.7 μ s
		2 (1982Ka25).
	$ \begin{array}{c} J^{\pi \dagger} \\ 0^{+} \\ 2^{+} \\ (4^{+}) \\ (6^{+}) \\ (8^{+}) \end{array} $	$ \frac{J^{\pi^{\dagger}}}{0^{+}} = \frac{T_{1/2}^{\ddagger}}{<0.4 \text{ ns}} \\ \frac{Z^{+}}{(4^{+})} = \frac{4.0 \text{ ns } 3}{20.2 \text{ ns } 8} \\ \frac{Z^{+}}{(8^{+})} = \frac{2.080 \ \mu \text{s } 17}{} $

[†] From Adopted Levels.

[‡] $\gamma\gamma$ (t) (1982Ka25), unless otherwise stated.

$\gamma(^{132}\text{Sn})$

I γ normalization, I(γ +ce) normalization: Absolute γ -intensities are given. I(K α x ray)=21.0 25 (1982Ka25).

E_{γ}^{\dagger}	Ι _γ ‡@	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α &	$I_{(\gamma+ce)}^{(a)}$	Comments
132.3 3	62 5	4847.0	(8+)	4714.7	(6+)	E2	0.592 10	100	$ \begin{array}{l} \alpha(K)\exp=0.44 \ 4; \ \alpha(\exp)=0.59 \ 9 \\ (1982Ka25) \\ ce(K)/(\gamma+ce)=0.288 \ 4; \\ ce(L)/(\gamma+ce)=0.0677 \ 12; \\ ce(M)/(\gamma+ce)=0.01370 \ 25 \\ ce(N)/(\gamma+ce)=0.00245 \ 5; \\ ce(O)/(\gamma+ce)=0.0001249 \ 22 \\ \alpha(K)=0.458 \ 8; \ \alpha(L)=0.1078 \ 19; \\ \alpha(M)=0.0218 \ 4 \\ \alpha(N)=0.00390 \ 7; \ \alpha(O)=0.000199 \ 4 \end{array} $
299.2 3	100 6	4714.7	(6+)	4415.5	(4+)	(E2)	0.0358	100	$\begin{aligned} &\alpha(\text{K})\exp=0.028 \ 5 \ (1980\text{B}j01) \\ &\text{ce}(\text{K})/(\gamma+\text{ce})=0.0290 \ 4; \\ &\text{ce}(\text{L})/(\gamma+\text{ce})=0.00446 \ 7; \\ &\text{ce}(\text{M})/(\gamma+\text{ce})=0.000885 \ 13 \\ &\text{ce}(\text{N})/(\gamma+\text{ce})=0.0001625 \ 24; \\ &\text{ce}(\text{O})/(\gamma+\text{ce})=1.147\times10^{-5} \ 17 \\ &\alpha(\text{K})=0.0300 \ 5; \ \alpha(\text{L})=0.00462 \ 7; \end{aligned}$

$51111 uccay (2.000 \ \mu s) = 1902 Ra25, 1900 \ 01, 2012 Ra50 (continue)$	IT decay (2.080 µs) 1982Ka25,1980Bj0	1,2012Ka36 (continued)
--	--------------------------------------	------------------------

$\gamma(^{132}\text{Sn})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger @}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	α &	$I_{(\gamma+ce)}^{@}$	Comments
374.3 <i>3</i> 4040.8 <i>5</i> 4415.7 <i>5</i>	84.2 24 85.7 24 14.3 24	4415.5 4041.1 4415.5	(4 ⁺) 2 ⁺ (4 ⁺)	4041.1 2 ⁺ 0.0 0 ⁺ 0.0 0 ⁺	(E2) [E4]	0.01751	85.7 <i>24</i> 85.7 <i>24</i> 14.3 <i>24</i>	$\begin{aligned} &\alpha(M) = 0.000917 \ 14 \\ &\alpha(N) = 0.0001683 \ 25; \ \alpha(O) = 1.188 \times 10^{-5} \ 17 \\ &\alpha(K) \exp = 0.020 \ 7 \ (1980Bj01) \\ &ce(K)/(\gamma + ce) = 0.01460 \ 21; \\ &ce(L)/(\gamma + ce) = 0.00211 \ 3; \\ &ce(M)/(\gamma + ce) = 0.000416 \ 6 \\ &ce(N)/(\gamma + ce) = 7.68 \times 10^{-5} \ 11; \\ &ce(O)/(\gamma + ce) = 5.73 \times 10^{-6} \ 9 \\ &\alpha(K) = 0.01485 \ 22; \ \alpha(L) = 0.00214 \ 3; \\ &\alpha(M) = 0.000423 \ 6 \\ &\alpha(N) = 7.82 \times 10^{-5} \ 12; \ \alpha(O) = 5.84 \times 10^{-6} \ 9 \end{aligned}$

[†] From 1980Bj01.

[‡] From 1982Ka25.
[#] From ce data.
[@] Absolute intensity per 100 decays.

[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

