History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, A. A. Rodionov and S. Sakharov, Balraj Singh	NDS 104, 497 (2005)	10-Feb-2005

Parent: ¹³²Nd: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=94$ s 8; $Q(\varepsilon)=3790$ 60; $\%\varepsilon+\%\beta^+$ decay=100.0 1995Bu11 (also 1994Bu18): measured E γ , $I\gamma$, $\gamma\gamma(t)$, $X\gamma(t)$, ce, $ce\gamma(t)$, $T_{1/2}(^{132}Nd \text{ isotope})$. Others: 1977Bo02 (measured $T_{1/2}$ of ¹³²Nd g.s.).

¹³²Pr Levels

E(level)	$J^{\pi \dagger}$	Comments
0.0	(2)+	E(level): probably the g.s. of 132 Pr, however the relative spacing between this state and a possible (5 ⁺) isomer is unknown.
147.72 11	1+	
284.53 13	$(1.2)^{-}$	
288.16 12	$(0 \text{ to } 3)^+$	J^{π} : 1 ⁺ (1995Bu11).
342.90 13	$(0 \text{ to } 3)^+$	J^{π} : 1 ⁺ (1995Bu11).
387.20 18	$(0 \text{ to } 3)^+$	J^{π} : 1 ⁺ (1995Bu11).
405.82 16	$(0 \text{ to } 3^+)$	
501.34 16	$(0 \text{ to } 3)^{+}$	J^{π} : 1 ⁺ (1995Bu11).
526.15 17	$(0 \text{ to } 3)^+$	
567.49 20	$(0 \text{ to } 3^+)$	
587.44 24	$(0 \text{ to } 3)^+$	J^{π} : (1 ⁺) (1995Bu11).
630.42 24	$(0 \text{ to } 3^+)$	
714.94 15	1+	
724.83 16	(≤3)	
854.9 <i>3</i>	$(0 \text{ to } 3^+)$	
861.23 22	$(0 \text{ to } 4^{-})$	
981.85 <i>17</i>	$(0^+ \text{ to } 3^+)$	
1330.1 <i>3</i>	$(0 \text{ to } 3^+)$	
1440.7 6	$(0 \text{ to } 3^+)$	

[†] From Adopted Levels. Possible allowed $\varepsilon + \beta^+$ feedings from 0⁺ suggest 1⁺ for most levels. However, log *ft* values are not considered (by the evaluators) as definitive when feedings are low (<10%).

 ε, β^+ radiations

E(decay)	E(level)	Iβ ⁺ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon\!+\!\beta^+)^\dagger$	Comments
$(2.35 \times 10^3 \ddagger 6)$	1440.7	<0.2	<1.1	>5.4	<1.3	av Eβ=599 27; εK=0.733 15; εL=0.1034 22; εM+=0.0293 7
$(2.46 \times 10^3 6)$	1330.1	0.77 11	3.8 <i>3</i>	4.9	4.6 4	av Eβ=648 27; εK=0.705 17; εL=0.0993 24; εM+=0.0282 7
$(2.81 \times 10^3 6)$	981.85	2.2 2	5.4 5	4.9	7.6 6	av Eβ=804 27; εK=0.603 19; εL=0.085 3; εM+=0.0240 8
$(2.93 \times 10^3 6)$	861.23	0.53 8	1.1 <i>1</i>	5.7	1.6 2	av Eβ=859 28; εK=0.566 19; εL=0.079 3; εM+=0.0225 8
$(2.94 \times 10^3 6)$	854.9	0.3	0.5 1	6.0	0.8 1	av Eβ=861 28; εK=0.564 19; εL=0.079 3; εM+=0.0224 8
$(3.07 \times 10^3 6)$	724.83	1.6 <i>3</i>	2.6 5	5.3	4.2 8	av E β =920 28; ε K=0.524 19; ε L=0.073 3; ε M+=0.0208 8
$(3.08 \times 10^3 6)$	714.94	8.96	14 <i>1</i>	4.6	23 1	av Eβ=925 28; εK=0.521 19; εL=0.073 3; εM+=0.0207 8
$(3.16 \times 10^3 6)$	630.42	0.66 21	0.9 <i>3</i>	5.8	1.6 5	av E β =963 28; ε K=0.496 18; ε L=0.069 3; ε M+=0.0197 8

¹³² Nd ε decay (94 s)	1995Bu11 (continued)
--	----------------------

E(decay)	E(level)	$I\beta^+$ †	Ιε [†]	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
$(3.20 \times 10^3 6)$	587.44	0.47 13	0.63 17	6.0	1.1 3	av E β =983 28; ε K=0.483 18; ε L=0.068 3; ε M+=0.0191 8
$(3.22 \times 10^3 6)$	567.49	0.4 1	0.5 1	6.1	0.9 2	av E β =992 28; ε K=0.477 18; ε L=0.067 3; ε M+=0.0189 8
$(3.26 \times 10^3 \ 6)$	526.15	1.5 1	1.8 <i>1</i>	5.5	3.3 2	av E β =1011 28; ε K=0.465 18; ε L=0.0651 25; ε M+=0.0184 7
$(3.29 \times 10^3 6)$	501.34	2.8 2	3.3 3	5.3	6.1 4	av Eβ=1022 28; εK=0.458 18; εL=0.0640 25; εM+=0.0181 7
$(3.40 \times 10^3 6)$	387.20	2.2 3	2.3 3	5.5	4.5 5	av Eβ=1074 28; εK=0.426 17; εL=0.0595 24; εM+=0.0169 7
$(3.45 \times 10^3 6)$	342.90	2.6 5	2.5 5	5.4	5.1 9	av Eβ=1094 28; εK=0.414 17; εL=0.0579 23; εM+=0.0164 7
$(3.50 \times 10^3 \ 6)$	288.16	1.1 6	0.9 6	5.9	2.0 12	av Eβ=1119 28; εK=0.400 16; εL=0.0558 23; εM+=0.0158 7
$(3.51 \times 10^{3 \ddagger 6})$	284.53	< 0.85	< 0.75	>6.0	<1.6	av Eβ=1121 28; εK=0.399 16; εL=0.0557 23; εM+=0.0158 7
$(3.64 \times 10^3 6)$	147.72	19 <i>I</i>	14 <i>1</i>	4.7	33 2	av Eβ=1184 28; εK=0.365 15; εL=0.0509 21; εM+=0.0144 6

ϵ, β^+ radiations (continued)

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

$\gamma(^{132}Pr)$

I γ normalization: $\Sigma I(\gamma+ce)$ of γ 's to g.s.=100; assuming no $\varepsilon+\beta^+$ feeding to ¹³²Pr g.s.

Eγ	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α #	Comments
96.0 <i>3</i> 99.1 <i>2</i>	† 1.6 2	501.34 387.20	$(0 \text{ to } 3)^+$ $(0 \text{ to } 3)^+$	405.82 288.16	$(0 \text{ to } 3^+)$ $(0 \text{ to } 3)^+$	M1	1.35	α (K)=1.15; α (L)=0.158; α (M)=0.0332; α (N+)=0.0091 α (K)exp=1.26 <i>12</i>
102.4 <i>3</i>	0.8 2	387.20	$(0 \text{ to } 3)^+$	284.53	(1,2) ⁻	[E1]	0.237	α (L)exp≤0.15. α (K)=0.201; α (L)=0.0283; α (M)=0.00588; α (N+)=0.00153
117.9 2	1.2 5	405.82	$(0 \text{ to } 3^+)$	288.16	$(0 \text{ to } 3)^+$			
121.0 5	†	526.15	$(0 \text{ to } 3)^+$	405.82	(0 to 3 ⁺)			
122.0 4	†	405.82	$(0 \text{ to } 3^+)$	284.53	$(1,2)^{-}$			
136.9 2	13.5 5	284.53	(1,2) ⁻	147.72	1+	E1	0.106	α (K)exp=0.070 <i>10</i> ; α (L)exp=0.016 <i>4</i> α (K)=0.091; α (L)=0.0124; α (M)=0.00259; α (N+)=0.00068
137.1 <i>3</i>	†	724.83	(<3)	587.44	$(0 \text{ to } 3)^+$			
140.6 2	11.3 9	288.16	$(0 \text{ to } 3)^+$	147.72	1+	M1	0.501	α (K)exp=0.44 7; α (L)exp=0.075 13 α (K)=0.427; α (L)=0.0585; α (M)=0.0123; α (N+)=0.00336
147.7 2	100.0 15	147.72	1+	0.0	(2) ⁺	M1	0.436	α (K)exp=0.36 4; α (L)exp=0.068 3; α (M)exp=0.015 3 α (K)=0.372; α (L)=0.0509; α (M)=0.0107; α (N+)=0.00292
183.2 4	†	526.15	(0 to 3) ⁺	342.90	$(0 \text{ to } 3)^+$			

Continued on next page (footnotes at end of table)

¹³²Nd ε decay (94 s) **1995Bu11** (continued)

$\gamma(^{132}\text{Pr})$ (continued)

E_{γ}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult.	α #	Comments
195.2 <i>1</i>	8.3 11	342.90	$(0 \text{ to } 3)^+$	147.72	1+	M1,E2	0.204	α (K)exp=0.22 5; α (L)exp=0.038 10 α (K)=0.163 9; α (L)=0.032 9; α (M)=0.0070 21; α (N+)=0.0019 6
199.1 <i>3</i>	0.9 2	724.83	(≤3)	526.15	$(0 \text{ to } 3)^+$			
213.3 2	4.2 1	501.34	(0 to 3) ⁺	288.16	(0 to 3) ⁺	M1,E2	0.156	$\begin{array}{l} \alpha({\rm K}) {\rm exp} {=} 0.124 \ 17 \\ \alpha({\rm K}) {=} 0.126 \ 10; \ \alpha({\rm L}) {=} 0.024 \ 6; \\ \alpha({\rm M}) {=} 0.0051 \ 13; \ \alpha({\rm N} {+}) {=} 0.0014 \ 4 \end{array}$
224.6 3	1.3 2	630.42	$(0 \text{ to } 3^+)$	405.82	$(0 \text{ to } 3^+)$		0.110 (
237.8 3	1.3 1	526.15	$(0 \text{ to } 3)^{+}$	288.16	$(0 \text{ to } 3)^{+}$	(M1,E2)	0.113 6	α (K)=0.092 9; α (L)=0.016 3; α (M)=0.0035 7; α (N+)=0.00094 16 α (K)exp=0.096 24 for 239.6+237.8.
239.6 3	2.6 4	387.20	(0 to 3) ⁺	147.72	1+	(M1,E2)	0.110 6	$\alpha(K) = 0.090 \ 9; \ \alpha(L) = 0.016 \ 3; \ \alpha(M) = 0.0034 \ 7; \ \alpha(N+) = 0.00092 \ 16 \ \alpha(K) \exp = 0.096 \ 24 \ for \ 239.6 + 237.8.$
257.4 <i>3</i>	0.6 2	981.85	$(0^+ \text{ to } 3^+)$	724.83	(≤3)			
284.5 2	8.8 5	284.53	(1,2) ⁻	0.0	$(2)^{+}$	E1	0.0149	α (K)exp=0.016 5 α (K)=0.0128; α (L)=0.00169; α (M)=0.00035
288.2 2	6.2 8	288.16	(0 to 3) ⁺	0.0	(2)+	M1,E2	0.064 7	α (K)exp=0.09 3 α (K)=0.053 8; α (L)=0.0087 6; α (M)=0.00186 16; α (N+)=0.00050 4
299.0 <i>3</i>	1.8 4	587.44	(0 to 3) ⁺	288.16	(0 to 3) ⁺	M1	0.0642	$\begin{array}{l} \alpha({\rm K}) = 0.056 \ 15 \\ \alpha({\rm K}) = 0.0549; \ \alpha({\rm L}) = 0.00738; \\ \alpha({\rm M}) = 0.00155; \ \alpha({\rm N}+) = 0.00042 \end{array}$
310.0 4	†	714.94	1+	405.82	$(0 \text{ to } 3^+)$			
319.0 4	†	724.83	(<3)	405.82	$(0 \text{ to } 3^+)$			
342.8 3	1.2 6	342.90	$(0 \text{ to } 3)^+$	0.0	$(2)^+$			
352.8 <i>3</i>	4.2 3	501.34	$(0 \text{ to } 3)^+$	147.72	1+			
372.0 4	0.7 2	714.94	1^{+}	342.90	$(0 \text{ to } 3)^+$			
378.6 2	5.0 2	526.15	$(0 \text{ to } 3)^+$	147.72	1+	M1,E2	0.030 5	$\alpha(K) \exp = 0.027 \ 7$ $\alpha(K) = 0.025 \ 5; \ \alpha(L) = 0.00379 \ 17;$ $\alpha(M) = 0.00080 \ 3; \ \alpha(N+) = 0.00022 \ 1$
382.2 4	1.9 <i>3</i>	724.83	(≤3)	342.90	$(0 \text{ to } 3)^+$			
414.2 3	1.7 2	981.85	$(0^+ \text{ to } 3^+)$	567.49	$(0 \text{ to } 3^+)$			
419.7 2	3.3 2	567.49	$(0 \text{ to } 3^+)$	147.72	1^{+}			
426.8 2	2.6 2	714.94 714.04	1 ⁺	288.10	$(0 \text{ to } 3)^{-1}$	F1	0.00533	$\alpha(K) = 0.0076.21$
430.4 2	13.2 9	/14.94	1	204.33	(1,2)	LI	0.00555	α (K)exp=0.007021 α =0.00533; α (K)=0.00458; α (L)=0.00059; α (M)=0.00012
440.0 <i>3</i>	2.3 6	724.83	(≤3)	284.53	$(1,2)^{-}$			
449.0 <i>4</i>	T	854.9	$(0 \text{ to } 3^+)$	405.82	$(0 \text{ to } 3^+)$			
455.0 4	Ť	861.23	(0 to 4 ⁻)	405.82	(0 to 3 ⁺)			
482.7 <i>3</i>	<2.8	630.42	$(0 \text{ to } 3^+)$	147.72	1+			
501.4 3	1.4 4	501.34	$(0 \text{ to } 3)^+$	0.0	$(2)^+$		0.010(
567.02	21.74	/14.94	1'	147.72	1'	MI	0.0126	$\alpha(\mathbf{K}) = 0.0132$ $\alpha(\mathbf{K}) = 0.0107; \alpha(\mathbf{L}) = 0.00141$
57682	283	861.23	$(0 \text{ to } 4^{-})$	284 53	$(1 2)^{-}$			$u(\mathbf{K}) = 0.0107, u(\mathbf{L}) = 0.00141$
693.7 <i>3</i>	1.9 8	981.85	$(0^+ \text{ to } 3^+)$	288.16	$(0 \text{ to } 3)^+$			
707.2 <i>3</i>	1.3 1	854.9	$(0 \text{ to } 3^+)$	147.72	1+			
725.2 3	2.6 11	724.83	(≤3)	0.0	$(2)^{+}$			
834.2 3	2.7 2	981.85	$(0^+ \text{ to } 3^+)$	147.72	1+			
981.3 4	6.14	981.85	$(0^{+} \text{ to } 3^{+})$	0.0	$(2)^{+}$			
1041.7 4	2.4 4 3.4 4	1330.1	$(0 to 3^{+})$ (0 to 3 ⁺)	284.53	$(0 \ 10 \ 3)^{-}$ $(1.2)^{-}$			

Continued on next page (footnotes at end of table)

¹³²Nd ε decay (94 s) 1995Bu11 (continued)

$\gamma(^{132}Pr)$ (6	continued)
-----------------------	------------

Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
1182.5 4	2.0 3	1330.1	$(0 \text{ to } 3^+)$	147.72	1^{+}
1293.0 5	<2.2	1440.7	$(0 \text{ to } 3^+)$	147.72	1^{+}

[†] Weak transition. [‡] For absolute intensity per 100 decays, multiply by 0.588 *10*.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

S

 $^{132}_{59}\mathrm{Pr}_{73}$ -5

From ENSDF

 $^{132}_{59} Pr_{73}\text{-}5$