¹³²Pm ε decay (6.3 s) 1990Ko25

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, A. A. Rodionov and S. Sakharov, Balraj Singh	NDS 104, 497 (2005)	10-Feb-2005

Parent: ¹³²Pm: E=0.0; $J^{\pi}=(3^+)$; $T_{1/2}=6.3 \text{ s } 7$; $Q(\varepsilon)=9710 SY$; $\%\varepsilon+\%\beta^+$ decay=100.0

¹³²Pm-Q(ε): 9710 200 (syst,2003Au03).

1990Ko25 (also 1987Ko24): Measured E γ , I γ , $\gamma\gamma$, T_{1/2} of ¹³²Nd isotope. Comparison with Interacting Boson Model calculations. Others:

1977Bo02 (isotopic identification, $T_{1/2}$), 1985Wi07 (delayed protons and $T_{1/2}$), 1988BeYG ($T_{1/2}$, E γ), 1989McZU ($T_{1/2}$).

¹³²Nd Levels

E(level) [†]	$J^{\pi \ddagger}$
0.0	0^{+}
213.10 18	2+
610.1 <i>3</i>	4+
823.50 22	(2^{+})
1117.60 25	(3^{+})
1388.0 4	(4^{+})

[†] From least-squares fit to $E\gamma's$.

[‡] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$ ‡	$I\varepsilon^{\ddagger}$	$\log ft^{\dagger}$	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(8322 <i>SY</i>)	1388.0	<2.2	< 0.090	>6.5	<2.3	av Eβ=3401 97; εK=0.033 3; εL=0.0046 4; εM+=0.00131 11
(8592 SY)	1117.60	< 6.0	< 0.22	>6.1	<6.2	av E β =3532 97; ε K=0.0298 23; ε L=0.0042 4; ε M+=0.00118 10
(8886 SY)	823.50	<17.4	<0.6	>5.8	<18	av E β =3675 97; ε K=0.0268 20; ε L=0.0037 3; ε M+=0.00106 8
(9099 SY)	610.1	<20.4	<0.6	>5.7	<21	av E β =3778 98; ε K=0.0249 18; ε L=0.0035 3; ε M+=0.00099 8
(9496 SY)	213.10	<52	<1.4	>5.4	<53	av E β =3971 98; ε K=0.0218 16; ε L=0.00303 21; ε M+=0.00086 6

[†] Only limits are given since the decay scheme is not considered as complete, there is a large gap of about 8 MeV between the highest known populated level in ¹³²Nd and $Q(\varepsilon)$ value.

[‡] Absolute intensity per 100 decays.

$\gamma(^{132}\text{Nd})$

I γ normalization: $\Sigma(I(\gamma+ce) \text{ of } \gamma' \text{ s to g.s.})=100$, assuming No feeding to g.s.. The delayed proton branch is $\approx 5 \times 10^{-5}$ (see ¹³²Pm Adopted Levels).

Eγ	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π} Mu	lt. [†] $\alpha^{\#}$
213.1 2	100 10	213.10	2+	0.0 0	+ E2	0.161
294.1 4	1.0 5	1117.60	(3^{+})	823.50 (2+)	
397.0 2	26 <i>3</i>	610.1	4+	213.10 2	+ E2	0.0225
564.5 3	31	1388.0	(4^{+})	823.50 (2+)	
610.4 3	14 2	823.50	(2^{+})	213.10 2	+	
823.5 3	13 2	823.50	(2^{+})	0.0 0	+	
904.5 2	71	1117.60	(3+)	213.10 2	+	

¹³²Pm ε decay (6.3 s) 1990Ko25 (continued)

 $\gamma(^{132}\text{Nd})$ (continued)

[†] From adopted gammas.
[‡] For absolute intensity per 100 decays, multiply by ≈0.78.
[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹³²Pm ε decay (6.3 s) 1990Ko25

Decay Scheme

 $^{132}_{60}\text{Nd}_{72}$