132 Cd β^- decay (84 ms) 2000Ha55

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	ENSDF	28-Feb-2018				

Parent: ¹³²Cd: E=0; $J^{\pi}=0^+$; $T_{1/2}=84$ ms 5; $Q(\beta^-)=12150$ SY; $\%\beta^-$ decay=100.0

¹³²Cd-T_{1/2}: From ¹³²Cd Adopted Levels.

¹³²Cd-Q(β⁻): 12150 210 (syst, 2017Wa10).

 132 Cd-% β^- decay: % β^- n=60 15 (2000Ha55).

¹³²Cd produced and identified by 2000Ha55 (also 2001Ha39) using ²³⁸U(p,F) E=1 GeV (target=uranium carbide/graphite) reaction followed by LASER ionization and mass separation at CERN/ISOLDE facility. Measured β and β -delayed neutron spectra. Deduced levels in ¹³²In. No γ rays were reported.

¹³²In Levels

E(level)	$J^{\pi \dagger}$	Comments
≈800	(1 ⁻)	Probable configuration= $v f_{7/2} \otimes \pi g_{9/2}^{-1}$.
≈1200	(1^{+})	Probable configuration= $\nu p_{3/2} \otimes \pi p_{1/2}^{2/2}$.
≈5000 [‡]	(1 ⁻)	Probable configuration= $vh_{11/2} \otimes \pi g_{9/2}^{-1}$.
≈5200 [‡]	(1^{+})	Probable configuration= $v f_{7/2} \otimes \pi f_{5/2}^{-1}$.
≈5900 [‡]	(1^{+})	Probable configuration= $vg_{7/2} \otimes \pi g_{9/2}^{-1}$.
≈8100 ^{‡#}	(1^{+})	
≈8600 ^{‡#}	(1^{+})	
≈9300 ^{‡#}	(1^{+})	

[†] As proposed by 2000Ha55, based on shell-model predictions and estimated log ft values from 0⁺. The parentheses have been added by the evaluators.

[‡] Neutron-decaying level to ¹³¹In.

[#] Member of configuration= $\nu g_{7/2}^{-1} \otimes \pi g_{9/2}^{-1}$.

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-‡#}	$\log ft^{\dagger}$
(2850 SY)	≈9300	≈0.4	≈4.7
(3550 SY)	≈8600	≈ 2	≈4.4
(4050 SY)	≈8100	≈0.3	≈5.5
(6250 SY)	≈5900	≈25	≈4.4
(6950 SY)	≈5200	≈ 4	≈5.4
(7150 SY)	≈5000	≈6	≈5.2
(10950 SY)	≈ 1200	<2	>6.5
(11350 SY)	≈ 800	≈30	≈5.4

[†] From 2000Ha55, based on the authors' β strength distributions.

[‡] Estimated (evaluators) based on log *ft*'s quoted by 2000Ha55. In deducing these feedings, uncertainty of 500 keV was assumed for $Q(\beta^{-})$ and 100 keV for level energy. About 70% of the β strength is accounted for in the branches shown by 2000Ha55.

[#] Absolute intensity per 100 decays.