$^{132}_{55}$ Cs₇₇-1

¹²⁴Sn(¹³C,4npγ) 2003Ra48

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, A. A. Rodionov and S. Sakharov, Balraj Singh	NDS 104, 497 (2005)	10-Feb-2005

¹³²Cs Levels

2003Ra48 (also 2003Ra28): E=75 MeV. Measured Eγ, Ιγ, γγ, γγ(θ)(DCO), γ(lin pol) using EUROBALL IV array in conjunction with a 110-element BGO inner ball as multiplicity filter. The protons were detected with 40 ΔE-E telescopes of Si detector array EUCLIDES. Linear polarizations were measured using 24 "clover" detectors. 2003Ra28 reported data for positive-parity states only, which are also given in 2003Ra48.

E(level) [‡]	$J^{\pi \#}$	E(level) [‡]	$J^{\pi \#}$	E(level) [‡]	J ^{π#}	E(level) [‡]	$J^{\pi \#}$
0	2+	1683.5 ^a 9	11^{+}	2772.8 ^h 10	14-	3985.6 ⁱ 12	17-
86.2 [†] 4	(3+)	1729.2 <mark>b</mark> 9	10^{+}	2865.1 <mark>&</mark> 9	14^{+}	4172.8 ^h 10	18^{-}
108.3 [†] 4	(4^{+})	1826.1 ^e 9	11-	2868.5 ^f 10	14^{-}	4187.0 ^g 11	(17 ⁻)
183.6 [†] 6	(4^{+})	1835.2 8	11^{+}	2893.6 ^b 9	14+	4241.5 ^a 10	17+
185.9 [†] 6	(5)	1891.2 ^b 9	11^{+}	2909.7 9	14+	4386.3 ^c 9	18^{+}
240.1 [†] 5	(5 ⁻)	1933.9 <i>f</i> 9	12-	2988.7 ^h 11	15-	4487.4 ⁱ 11	18-
311.7 ^{†d} 8	(7-)	1982.0 <mark>&</mark> 9	12^{+}	3028.9 ^c 9	15+	4665.5 <mark>&</mark> 10	18^{+}
379.3 f 8	8-	1987.9 ^c 9	12^{+}	3232.0 <mark>8</mark> 10	15-	4755.9 ^h 11	19-
537.6 ^d 8	8-	2089.4 ^d 10	12^{-}	3270.6 ^h 15	16-	4943.7 ⁱ 11	(19 ⁻)
787.8 <mark>8</mark> 8	9-	2201.5 ^b 9	12^{+}	3310.6 ^a 9	15^{+}	5073.6 ^a 10	19+
980.0 ^e 8	9-	2316.0 ^g 10	13-	3373.5 ⁱ 11	15^{-}	5212.4 ^c 10	
1081.5 ^f 9	10^{-}	2368.7 9	13+	3389.5 [°] 9	16+	5423.6 ^h 10	(20 ⁻)
1131.4 <mark>a</mark> 8	9+ @	2395.7 ^c 9	14^{+}	3585.9 ⁱ 11	16-	5696.5 ⁰ 10	20^{+}
1214.7 ^d 9	10^{-}	2410.0 ^{<i>a</i>} 9	13+	3665.7 ^h 16	17^{-}		
1281.9 <mark>&</mark> 8	10^{+}	2515.4 ^b 9	13+	3759.1 [°] 10	(17^{+})		
1474.6 <mark>8</mark> 9	11-	2636.0 ^h 11	13-	3788.7 <mark>&</mark> 9	16+		

[†] From 1997Ha29.

[‡] From least-squares fit to $E\gamma$'s, assuming $\Delta(E\gamma)=0.5$ keV for low-lying γ transitions from 1997Ha29.

[#] As proposed by 2003Ra48 based on $\gamma\gamma(\theta)$ and $\gamma($ lin pol) data and band assignments.

^(a) Assignment based on configuration= $\pi h_{11/2} \nu h_{11/2}$ suggested by 1998Li36 from smooth systematic trends of energy levels in even-A Cs nuclei.

- [&] Band(A): $\pi h_{11/2} \nu h_{11/2}$, $\alpha = 0$.
- ^{*a*} Band(a): $\pi h_{11/2} \nu h_{11/2}$, $\alpha = 1$.
- ^{*b*} Band(B): Chiral partner of $\pi h_{11/2} \nu h_{11/2}$.
- ^{*c*} Band(C): $\pi g_{7/2} \otimes \nu (g_{7/2} h_{11/2}^2)$.
- ^{*d*} Band(D): $\pi h_{11/2} \nu d_{5/2}$, $\alpha = 0$.
- ^{*e*} Band(d): $\pi h_{11/2} \nu d_{5/2}$, $\alpha = 1$.
- f Band(E): $\pi h_{11/2} \nu g_{7/2}$, $\alpha = 0$.
- ^g Band(e): $\pi h_{11/2} \nu g_{7/2}$, $\alpha = 1$.
- ^{*h*} Band(F): $\pi h_{11/2} \otimes \nu (d_{5/2} h_{11/2}^2)$.

^{*i*} Band(G): Band based on 15⁻.

¹²⁴Sn(¹³C,4npγ) **2003Ra48** (continued)

$\gamma(^{132}Cs)$

DCO(Q): gate on $\Delta J=2$, stretched quadrupole transition. DCO(D): gate on $\Delta J=1$, stretched dipole transition.

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	Comments
22.1 [‡]		108.3	(4^{+})	86.2	(3^{+})		
54 1^{\ddagger}		240.1	(5^{-})	185.9	(5)		
56 1		240.1	(5^{-})	103.7	(3)		
50.4 67.6.3	75 2 20	379.3	(5) 8 ⁻	311.7	(7^{-})		
$71.6^{\ddagger}.5$	15.2 20	311.7	(7^{-})	240.1	(7)		
71.0 5		105.0	(7)	109.2	(3^{+})		
//.0 ⁺		185.9	(5)	108.5	(4·)		
86.2+		86.2	(3^{+})	0	2*		
97.3+		183.6	(4^{+})	86.2	(3^{+})		
108.3		108.3	(4+)	0	2+		
131.9 [‡]		240.1	(5 ⁻)	108.3	(4^{+})		
136.7 4	13.7 7	2772.8	14-	2636.0	13-	M1+E2	DCO(Q)=0.58 5 POL=-0.44 <i>19</i> .
146.8 <i>3</i>	13.8 8	1982.0	12^{+}	1835.2	11^{+}		
150.5 3	79.3 25	1281.9	10^{+}	1131.4	9+	D+Q	DCO(Q)=0.63 5
152.7 4	25.0 6	1987.9	12+	1835.2	11+		
162.0 6	1.7 3	1891.2	11+	1729.2	10^+	D+Q	DCO(D)=0.91 14
167.2.3	5.2 5	2368.7	13'	2201.5	12	D+Q	DCO(D)=1.10~18
212.4 4	5.20 3107	2088 7	10 15 ⁻	5575.5 9779 8	13	$M1\pm E2$	DCO(O) = 0.48.4
215.95	51.07	2900.7	15	2112.0	14	W11+L2	$POL=-0.33 \ 20.$
225.9 3	100.0 6	537.6	8-	311.7	(7 ⁻)	M1+E2	DCO(Q)=0.53 <i>4</i> POL=-0.35 <i>10</i> .
234.7 4	2.8 4	1214.7	10^{-}	980.0	9-		
243.3 4	2.6 4	3232.0	15-	2988.7	15-		
263.3 6	2.1 5	2089.4	12-	1826.1	11-		
281.9 3	21.4 5	3270.6	16-	2988.7	15-	M1+E2	DCO(Q)=0.44 <i>4</i> POL=-0.39 <i>21</i> .
293.7 4	2.2 4	1081.5	10-	787.8	9-		
298.5 4	7.99	1982.0	12+	1683.5	11+	M1+E2	DCO(D)=1.05 6 POL=-0.43 16.
304.4 4	10.1 6	1987.9	12+	1683.5	11^{+}	M1+E2	DCO(Q)=0.46 9
210.2.4	706	2201.5	12+	1801 2	11+	M1 + E2	POL=-0.32 24. DCO(D)=0.06 14
510.5 4	7.0 0	2201.5	12	1691.2	11	MIT+E2	POI = -0.40.25
313.8.5	2.9.5	2515.4	13+	2201.5	12^{+}	D+O	DCO(D)=0.83 20
343.6 3	19.2 9	1131.4	9+	787.8	9-	E1	DCO(Q)=0.61 7
							POL=+0.6 3.
353.8 5	2.6 5	3585.9	16-	3232.0	15-	D+Q	DCO(Q)=0.51 9
360.6 2	3.0 5	3389.5	16^{+}	3028.9	15^{+}		
363.5 6	2.2 4	3232.0	15-	2868.5	14-	M1+E2	DCO(Q)=0.66 14 POL=-0.34 21.
378.2 4	2.5 6	2893.6	14^{+}	2515.4	13+	D+Q	DCO(D)=0.9 3
382.1 4	5.0 6	2316.0	13-	1933.9	12-	D+Q	DCO(Q)=0.53 5
386.7 4	8.5 8	2368.7	13+	1982.0	12+	D+Q	DCO(Q)=0.48 9
393.1 4	15.3 8	1474.6	11-	1081.5	10-	M1+E2	DCO(Q)=0.46 6 POL=-0.56 14.
395.1 <i>3</i>	21.1 6	3665.7	17-	3270.6	16-	M1+E2	DCO(Q)=0.44 7 POL=-0.48 24.
399.7 5	3.8 6	3985.6	17^{-}	3585.9	16-	D+Q	DCO(Q)=0.48 7

Continued on next page (footnotes at end of table)

¹²⁴Sn(¹³C,4npγ) 2003Ra48 (continued)

$\gamma(^{132}Cs)$ (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
401.6 3	27.0 7	1683.5	11^{+}	1281.9	10^{+}	M1+E2	DCO(Q)=0.54 9
407.8 <i>3</i>	40.0 8	2395.7	14+	1987.9	12+	E2	POL= -0.61 12. DCO(D)= 1.70 9 POL $-\pm 0.64$ 24
408.5 3	42.6 9	787.8	9-	379.3	8-	M1+E2	DCO(Q)=0.626 PO(L=0.5217
413.7 4	11.7 6	2395.7	14+	1982.0	12+	E2	POL=-0.53 17. DCO(Q)=0.94 9; DCO(D)=1.59 17 POL=+0.7 4.
422.1 3	8.0 <i>3</i>	2410.0	13+	1987.9	12^{+}		
424.0 4	1.7 3	4665.5	18^{+}	4241.5	17^{+}		
428.0 <i>3</i>	15.4 8	2410.0	13+	1982.0	12+	M1+E2	DCO(Q)=0.62 9 POL=-0.32 16.
442.4 <i>3</i>	5.5 4	980.0	9-	537.6	8-		
445.5 4	10.7 5	3310.6	15+	2865.1	14+	M1+E2	DCO(Q)=0.50 7 POL=-0.9 3.
447.3 <i>4</i>	2.1 4	1729.2	10+	1281.9	10+	D+Q	DCO(D)=1.8 5 DCO for ΔJ =2 and for ΔJ =1,non-stretched are the same.
452.9 5	4.3 8	4241.5	17 ⁺	3788.7	16+	M1+E2	DCO(Q)=0.57 9 POL=-0.42 15.
455.1 5	3.4 7	2865.1	14 ⁺	2410.0	13+	M1+E2	$DCO(Q)=0.68 \ 17$ POI = -0.4 3
456.3 <i>3</i>	0.9 3	4943.7	(19^{-})	4487.4	18^{-}		
459.3 5	3.5 6	1933.9	12-	1474.6	11-		
478.0 4	2.1 4	3788.7	16+	3310.6	15^{+}	D+O	DCO(Q)=0.48 10
483.6 <i>3</i>	3.4 7	2893.6	14+	2410.0	13+	M1+E2	$DCO(Q)=0.69\ 15$ POL = -0.26 21
494.1 <i>3</i>	14.4 6	1281.9	10^{+}	787.8	9-	E1	DCO(Q)=0.58 8 POL=+0.26 15.
496.4 2	8.9 9	2865.1	14 ⁺	2368.7	13+	M1+E2	DCO(D)=1.02 9 POI = -0.26 1/8
501.8 2	1.5.3	4487.4	18-	3985.6	17^{-}	D+O	DCO(O) = 0.53 / 0
507.1 2	12.7 2	4172.8	18-	3665.7	17-	M1+E2	DCO(Q)=0.475 POL = 0.4015
518.0 4	4.3 8	2201.5	12+	1683.5	11^{+}	M1+E2	DCO(D)=1.20 21 POI = 0.36 22
541.0.3	409	2909 7	14+	2368 7	13+	M1+F2	DCO(O)=0.52.25
546.6.4	458	2636.0	13-	2089.4	12^{-10}	M1+E2 M1+F2	$DCO(Q) = 0.52 \ 10$
#	н. 9 0	2030.0	15	2007.4	12	1011 1.2	POL=-0.23 17.
552.5" 2	0.8 4	2868.5	14-	2316.0	13-		
553.3 4	16.2 8	1835.2	11+	1281.9	10+	M1+E2	DCO(D)=1.04 7 POL=-0.51 23.
583.1 4	9.8 10	4755.9	19-	4172.8	18-	M1+E2	DCO(Q)=0.43 <i>14</i> POL=-0.34 <i>17</i> .
593.8 2	85.0 20	1131.4	9+	537.6	8-	E1	DCO(Q)=0.59 <i>4</i> POL=+0.24 <i>9</i> .
609.3 4	5.2 9	1891.2	11 ⁺	1281.9	10^{+}	M1+E2	DCO(D)=0.96 9 POL=-0.35 19
611.3 <i>3</i>	6.3 5	1826.1	11-	1214.7	10-	M1+E2	DCO(Q)=0.595 POI = -0.3428
633.3 4	19.2.8	3028.9	15^{+}	2395.7	14^{+}	D+O	DCO(O)=0.53 9
667.7 3	3.8 7	5423.6	(20^{-})	4755.9	19-	- · ×	
668.3 3	5.7 6	980.0	9-	311.7	(7-)	Q	DCO(Q)=1.12 9
677.1 4	7.4 9	1214.7	10-	537.6	8-	ò	DCO(D)=1.51 17
686.8 <i>3</i>	5.7 8	1474.6	11-	787.8	9-	ò	DCO(Q)=0.95 11
700.1 4	27.1 7	1982.0	12+	1281.9	10+	E2	DCO(Q)=0.99 8 POL=+0.6 3.

Continued on next page (footnotes at end of table)

124 Sn(13 C,4np γ) 2003Ra48 (continued)

$\gamma(^{132}Cs)$ (continued)

Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	Comments
702.1 3	3.6 7	2636.0	13-	1933.9	12^{-}		
702.2 2	25.7 7	1081.5	10-	379.3	8-	E2	DCO(Q)=0.97 5 POL=+0.29 14
703.8 2	22.7 6	1835.2	11+	1131.4	9+	E2	DCO(Q)=1.23 <i>15</i> POL=+0.6 3
706.0 4	15.7 9	1987.9	12+	1281.9	10^{+}	E2	DCO(Q)=1.11 20 POL =+0.55 27
726.5.4	4.7.8	2410.0	13+	1683.5	11^{+}	0	DCO(D) = 1.7.3
730.2.3	9.8 11	3759.1	(17^{+})	3028.9	15+	×	
753.6 3	5.3 4	3985.6	17-	3232.0	15-	E2	DCO(Q)=1.03 <i>10</i> POL=+0.36 <i>27</i> .
759.8.5	1.0.3	1891.2	11^{+}	1131.4	9+		
826.1 4	5.6 7	5212.4		4386.3	18+		DCO(O)=0.79 11
832.1.3	4.8 6	5073.6	19^{+}	4241.5	17^{+}	0	DCO(O) = 1.2.2
841.5 2	11.3 6	2316.0	13-	1474.6	11-	Ĕ2	DCO(Q)=1.00 9 POL=+0.29 16.
846.1 4	6.6 6	1826.1	11-	980.0	9-	E2	DCO(Q)=1.05 <i>11</i> POL=+0.63 <i>22</i>
852.4 3	10.9 6	1933.9	12-	1081.5	10-	E2	$DCO(Q)=0.97 \ 10$ POI =+0.47 25
874.6 4	5.0 6	2089.4	12-	1214.7	10-	E2	$DCO(Q)=1.04\ 20$ POL =+0.7.5
87694	206	4665 5	18^{+}	3788 7	16^{+}	0	DCO(O) = 1.3.3
883.1 3	9.9 8	2865.1	14 ⁺	1982.0	12+	E2	DCO(Q)=0.92 9 POI = +0.5 3
900.6 4	8.2 9	3310.6	15+	2410.0	13+	E2	DCO(Q)=1.02 7 POI = $1.02 7$
916.0.3	978	3232.0	15-	2316.0	13-	0	DCO(O) = 0.95.9
923.6 4	4.1 7	3788.7	16+	2865.1	14+	E2	$DCO(Q) = 1.10 \ 10$ POI = +0.7 4
930.9 4	7.3 6	4241.5	17+	3310.6	15+	E2	$DCO(Q)=1.22 \ 13$ $POL=+0.53 \ 13$
934.6.5	4.4.9	2868.5	14-	1933.9	12^{-}	0	DCO(O) = 1.02.9
955.0.5	093	4187.0	(17^{-})	3232.0	15-	×	
993.8 <i>3</i>	26.2 7	3389.5	16+	2395.7	14+	E2	DCO(Q)=0.91 <i>17</i> POL =+0.65 <i>24</i>
996.8 <i>3</i>	14.4 6	4386.3	18+	3389.5	16+	E2	DCO(Q)=1.27 21 POI -+0.40 22
1057.4 4	5.2 9	3373.5	15-	2316.0	13-	E2	$DCO(Q) = 1.19 \ 16$ POI = $+0.4 \ 3$
1310.2 3	4.2 8	5696.5	20^{+}	4386.3	18+	Q	DCO(Q)=1.06 14

[†] From $\gamma\gamma(\theta)$ and $\gamma(\text{lin pol})$; mult=Q corresponds to $\Delta J=2$ and D+Q to $\Delta J=0$ or 1 from $\gamma\gamma(\theta)$ data only. 2003Ra48 assign E2 and M1/E2, respectively to these transitions.
[‡] From ¹³²Cs level scheme of 1997Ha29.
[#] Placement of transition in the level scheme is uncertain.

¹²⁴Sn(¹³C,4npγ) 2003Ra48

¹³²₅₅Cs₇₇