| T      | A            | History  |                        |
|--------|--------------|----------|------------------------|
| Type   | Author       | Citation | Literature Cutoff Date |
| Update | Balraj Singh |          | 03-Aug-2005            |

#### Additional information 1.

Includes  ${}^{116}Cd({}^{22}Ne,6n\gamma)$ ,  ${}^{112}Cd({}^{26}Mg,\alpha 2n\gamma)$ ,  ${}^{110}Pd({}^{26}Mg,4n\gamma)$ ,  ${}^{64}Ni({}^{74}Ge,\alpha 2n\gamma)$  reactions.

2005Pa30: E=160, 165 MeV. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ ,  $\gamma\gamma(\theta)$  of SD band transitions using EUROBALL IV spectrometer consisting of 15 seven-crystal 'Clusters', 30 single-crystal tapered detectors, and 26 four-crystal 'Clovers'. Each of the three sets of detectors with inner-ball sections of a total of 181 BGO detectors. Deduced three SD bands.

1995Sa21 (also 1996Se04): E=155 MeV. Measured E $\gamma$ ,  $\gamma\gamma$  using EUROGAM array; deduced excited SD bands. Precise gamma-ray energies for SD-1 band given by 1996Se04 from a re-analysis of data.

1996Cl03: E=155 MeV. Measured lifetimes by Doppler-shift attenuation method;  $\gamma(\theta)$ ,  $\gamma\gamma$ . Deduced quadrupole moments.

1987Ki02, 1987WA18 (also 1988NoZY,1985No02): E=150 MeV. Measured E $\gamma$ , I $\gamma$ , lifetimes by DSAM; deduced SD bands, feeding pattern. 12 transitions in SD-1 band reported by 1985No02.

1995Ha28: <sup>116</sup>Cd(<sup>22</sup>Ne,6n $\gamma$ ) E=120 MeV. measured  $\gamma\gamma$ , lifetimes by DSAM, centroid shifts; deduced quadrupole moment of yrast SD band.

Others:

1998Fa07: E=155 MeV. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ ,  $\gamma\gamma(\theta)$ ; deduced SD band quasicontinuum, rotational damping using EUROGAM array of 54 Ge detectors.

1998Wi13: E=135-170 MEV. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ ; deduced SD-1 band feeding pattern vs entrance channel spin and energy using  $8\pi$  array of 20 Ge detectors and 70 BGO inner-ball detectors.

1997Ni04: <sup>112</sup>Cd(<sup>26</sup>Mg, $\alpha$ 2n $\gamma$ ) E=94 MeV and <sup>64</sup>Ni(<sup>74</sup>Ge, $\alpha$ 2n $\gamma$ ) E=239 MeV. Measured relative population of SD bands. 1994WaZV: <sup>110</sup>Pd(<sup>26</sup>Mg,4n $\gamma$ ) E=130 MeV. Measured DSAM, Q.

### <sup>132</sup>Ce Levels

| E(level)                  | $J^{\pi}$            | T <sub>1/2</sub> ‡ | Comments                                                                                                     |
|---------------------------|----------------------|--------------------|--------------------------------------------------------------------------------------------------------------|
| y <sup>†#</sup>           | J≈(20 <sup>+</sup> ) |                    | $J^{\pi}$ : from 2005Pa30. Other: ≈(18) from 1987Ki02 for level fed by 809γ.<br>E(level): y>4950 (1987Ki02). |
| 770.80+y <sup>†#</sup> 10 | J+2                  |                    | $J^{\pi}$ : decay of this level predominantly feeds yrast 18 <sup>+</sup> state In normal deformed band.     |
| 1580.10+y <sup>#</sup> 15 | J+4                  | 59 fs 20           | $T_{1/2}$ : apparent $T_{1/2}$ =301 fs 35 (1987Ki02).                                                        |
| 2445.81+y <sup>#</sup> 18 | J+6                  | 62 fs 14           | $T_{1/2}$ : apparent $T_{1/2}$ =193 fs 9 (1987Ki02).                                                         |
| 3375.41+y <sup>#</sup> 20 | J+8                  | 28 fs 12           | $T_{1/2}$ : apparent $T_{1/2}$ =118 fs 11 (1987Ki02).                                                        |
| 4371.31+y <sup>#</sup> 23 | J+10                 | <17 fs             | $T_{1/2}$ : apparent $T_{1/2}$ =87 fs 11 (1987Ki02).                                                         |
| 5433.02+y <sup>#</sup> 25 | J+12                 | <21 fs             | $T_{1/2}$ : apparent $T_{1/2}$ =75 fs 6 (1987Ki02).                                                          |
| 6561.8+y <sup>#</sup> 3   | J+14                 | 14 fs 7            | $T_{1/2}$ : apparent $T_{1/2}$ =61 fs 5 (1987Ki02).                                                          |
| 7758.2+y <sup>#</sup> 3   | J+16                 | 10 fs 8            | $T_{1/2}$ : apparent $T_{1/2}$ =43 fs 4 (1987Ki02).                                                          |
| 9023.8+y <sup>#</sup> 3   | J+18                 | <14 fs             | $T_{1/2}$ : apparent $T_{1/2}$ =35 fs 4 (1987Ki02).                                                          |
| 10360.6+y <sup>#</sup> 4  | J+20                 | <7 fs              | $T_{1/2}$ : apparent $T_{1/2}$ =26 fs 4 (1987Ki02).                                                          |
| 11771.4+y <sup>#</sup> 4  | J+22                 | <10 fs             | $T_{1/2}$ : apparent $T_{1/2}$ =26 fs 4 (1987Ki02).                                                          |
| 13259.5+y <sup>#</sup> 4  | J+24                 | <10 fs             | $T_{1/2}$ : apparent $T_{1/2}=22$ fs 8 (1987Ki02).                                                           |
| 14828.9+y <sup>#</sup> 4  | J+26                 | <24 fs             | $T_{1/2}$ : apparent $T_{1/2}=22$ fs 8 (1987Ki02).                                                           |
| 16483.8+y <sup>#</sup> 5  | J+28                 | <7 fs              | $T_{1/2}$ : apparent $T_{1/2} < 11$ fs (1987Ki02).                                                           |
| 18227.7+y <sup>#</sup> 5  | J+30                 |                    | $T_{1/2}$ : apparent $T_{1/2} < 17$ fs (1987Ki02).                                                           |
| 20063.8+y <sup>#</sup> 6  | J+32                 |                    |                                                                                                              |
| 21994.8+y <sup>#</sup> 6  | J+34                 |                    |                                                                                                              |
| 24022.0+y <sup>#</sup> 7  | J+36                 |                    |                                                                                                              |
| 26144.8+y <sup>#</sup> 8  | J+38                 |                    |                                                                                                              |
| 28360.6+y <sup>#</sup> 9  | J+40                 |                    |                                                                                                              |

## <sup>132</sup>Ce Levels (continued)

| E(level)                      | $\mathbf{J}^{\pi}$    | Comments                                                            |
|-------------------------------|-----------------------|---------------------------------------------------------------------|
| 30663.6+y <sup>#</sup> 14     | J+42                  |                                                                     |
| 33081.6+y <sup>#</sup> 17     | J+44                  |                                                                     |
| 35585.6+y <sup>#</sup> 20     | J+46                  |                                                                     |
| 38187.7+y <sup>#</sup> 22     | J+48                  |                                                                     |
| z <sup>@</sup>                | J1≈(19 <sup>-</sup> ) | $J^{\pi}$ : from 2005Pa30, based on 'identical' band relationships. |
| 724.40+z <sup>@</sup> 10      | J1+2                  |                                                                     |
| 1518.70+z <sup>@</sup> 15     | J1+4                  |                                                                     |
| 2384.59+z <sup>@</sup> 18     | J1+6                  |                                                                     |
| 3313.60+z <sup>@</sup> 20     | J1+8                  |                                                                     |
| 4314.39+z <sup>@</sup> 23     | J1+10                 |                                                                     |
| 5382.89+z <sup>@</sup> 25     | J1+12                 |                                                                     |
| 6521.3+z <sup>@</sup> 3       | J1+14                 |                                                                     |
| 7732.6+z <sup>@</sup> 3       | J1+16                 |                                                                     |
| 9021.1+z <sup>@</sup> 3       | J1+18                 |                                                                     |
| 10385.6+z <sup>@</sup> 4      | J1+20                 |                                                                     |
| 11839.5+z <sup>@</sup> 4      | J1+22                 |                                                                     |
| 13377.8+z <sup>@</sup> 5      | J1+24                 |                                                                     |
| 14999.3+z <sup>@</sup> 5      | J1+26                 |                                                                     |
| 16729.5+z <sup>@</sup> 6      | J1+28                 |                                                                     |
| 18545.6+z <sup>@</sup> 7      | J1+30                 |                                                                     |
| 20452.2+z <sup>@</sup> 8      | J1+32                 |                                                                     |
| 22451.1+z <sup>@</sup> 9      | J1+34                 |                                                                     |
| 24536.7+z <sup>@</sup> 11     | J1+36                 |                                                                     |
| u <sup>&amp;</sup>            | J2≈(24 <sup>-</sup> ) | $J^{\pi}$ : from 2005Pa30, based on 'identical' band relationships. |
| 890.19+u <sup>&amp;</sup> 10  | J2+2                  |                                                                     |
| 1839.79+u <sup>&amp;</sup> 15 | J2+4                  |                                                                     |
| 2857.29+u <sup>&amp;</sup> 18 | J2+6                  |                                                                     |
| 3945.70+u <sup>&amp;</sup> 20 | J2+8                  |                                                                     |
| 5107.09+u <sup>&amp;</sup> 23 | J2+10                 |                                                                     |
| 6335.28+u <sup>cc</sup> 25    | J2+12                 |                                                                     |
| 7640.6+u <sup>cc</sup> 3      | J2+14                 |                                                                     |
| 9024.1+u <sup>cc</sup> 3      | J2+16                 |                                                                     |
| 10489.5+u <sup>cc</sup> 3     | J2+18                 |                                                                     |
| $12030.6 + u^{22} 4$          | J2+20                 |                                                                     |
| $13642.1 + u^{22} 5$          | J2+22                 |                                                                     |
| $15307.5 + u^{22} 5$          | J2+24                 |                                                                     |
| $1/043.1+u^{20}$ 0            | J2+26                 |                                                                     |
| $18858.3 + u^{20}$ /          | J2+28                 |                                                                     |
| $20/45.4 \pm 0^{\circ}$       | J2+30<br>I2+22        |                                                                     |
| $22097.1 + u^{-2} 9$          | J2+32                 |                                                                     |
| $24097.0 \pm u^{22} 10$       | JZ+34<br>I2+36        |                                                                     |
| 20152.0+u 11                  | JZ+30                 |                                                                     |

#### <sup>132</sup>Ce Levels (continued)

<sup>†</sup> Decays to four normal-deformed bands (1988NoZY).

- <sup>‡</sup> From DSAM (1987Ki02). Lifetime data from DSAM for three SD bands are reported by 1996Cl03 and values are given in terms of F $\tau$  and deduced quadrupole moments for the bands.
- <sup>#</sup> Band(A): SD-1 band (2005Pa30,1996Se04,1995Sa21,1987Ki02,1985No02). Q(intrinsic)=7.4 2: weighted average of 7.4 3 (1996Cl03), 7.4 9 (1995Ha28), 7.5 6 (recalculated 8.8 8 by 1990RE12 from data of 1987Ki02), 7.5 7 (quoted by 1992PaZW). Other: 7.1 (1994WaZV).  $\beta_2$ (from Q)=0.41 4 (1995Ha28), 0.39 2 (1994WaZV). Percent population=1.4 to 3.5 (1998Wi13) as bombarding energy increases from 135 to 150 MeV in <sup>100</sup>Mo(<sup>36</sup>S,4n\gamma). Remains constant at about 3.5% between 150 and 175 MeV. Percent population=5 in <sup>100</sup>Mo(<sup>36</sup>S,4n\gamma) E=150 MeV (1987Ki02); 5.5 in <sup>100</sup>Mo(<sup>36</sup>S,4n\gamma) E=155 MeV (1995Sa21), ≈6 (2005Pa30). 1996Cl03 point that in the decay of this band, it is seen that all transitions in the BAND(F) up to and including the 822 keV (18<sup>+</sup>→16<sup>+</sup>)  $\gamma$  and no evidence for the 936 keV (20<sup>+</sup>→18<sup>+</sup>). Configuration=(( $\pi$ 5<sup>4</sup>)⊗( $\nu$ 6<sup>2</sup>)) (1995Ha34). There is some evidence of  $\Delta$ J=2 staggering in the lower and higher rotational frequency regions, but not in the middle range (1996Se04). Measurements of quasicontinuum spectra by 1998Fa07 suggest that the SD band is fed by a highly deformed quasicontinuum of transitions of quadrupole character. Configuration proposed by 2005Pa30: Lower part of SD-1 band:  $\pi[(g_{9/2}^{-2})(d_{5/2}/g_{7/2})^6(h_{11/2}^4)]\nu[(h_{11/2}^{-4})(d_{5/2}/g_{7/2})^{-4}(d_{3/2}/s_{1/2})^{-4} (h_{9/2}/f_{7/2})^2(i_{13/2}^2)]$ . At higher spins different configurations are discussed by 2005Pa30, one such configuration being: starting at ( $h_{9/2}/f_{7/2}$ )<sup>2</sup> and then becoming ( $h_{9/2}/f_{7/2}$ )<sup>3</sup>.
- <sup>(a)</sup> Band(B): SD-2 band (2005Pa30,1995Sa21,1996Cl03). Percent population=1.0 (1995Sa21) in <sup>100</sup>Mo(<sup>36</sup>S,4n $\gamma$ ) E=155 MeV.  $\approx$  1 (2005Pa30) at E(<sup>36</sup>S)=160, 165 MeV. Q(intrinsic)=7.3 4 (1996Cl03) from DSAM data for all the transitions in the band. Probable excitation of a neutron from 1/2[411] ( $\alpha$ =+1/2) or 7/2[523] orbital to 1/2[530] or 3/2[651]  $\alpha$ =+1/2 orbital (1995Sa21, 1996Cl03).
- <sup>&</sup> Band(C): SD-3 band (2005Pa30,1995Sa21,1996Cl03). Percent population=1.0 (1995Sa21) in <sup>100</sup>Mo(<sup>36</sup>S,4n $\gamma$ ) E=155 MeV;  $\approx$  1 (2005Pa30) at E(<sup>36</sup>S)=160, 165 MeV. Q(intrinsic)=7.6 4 (1996Cl03) from DSAM data for all the transitions in the band. Probable excitation of a neutron from 1/2[411] ( $\alpha$ =+1/2) or 7/2[523] orbital to 1/2[530] or 3/2[651]  $\alpha$ =+1/2 orbital (1995Sa21, 1996Cl03).

 $\gamma(^{132}\text{Ce})$ 

Angular intensity ratio (from 2005Pa30): R=I( $\gamma\gamma$ )(measured at 158°, gated at 90°)/ I( $\gamma\gamma$ )(measured at 90°, gated at 158°). Value of  $\approx 1.0$  is expected for  $\Delta J=2$ , E2 transitions and  $\approx 0.65$  for  $\Delta J=1$ , dipole transitions.

| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$     | $J_f^{\pi}$           | Mult. <sup>#</sup> | Comments                                                        |
|------------------------|-------------------------|------------------------|----------------------|-----------|-----------------------|--------------------|-----------------------------------------------------------------|
| 724.4 1                | 0.47 1                  | 724.40+z               | J1+2                 | Z         | J1≈(19 <sup>-</sup> ) | Q                  | R=0.9 2.                                                        |
| 770.8 1                | 0.10 1                  | 770.80+y               | J+2                  | У         | J≈(20 <sup>+</sup> )  | Q                  | $E_{\gamma}$ : other: 769.61 <i>10</i> (1996Se04).<br>R=1.0 2.  |
| 794.3 <i>1</i>         | 0.70 2                  | 1518.70+z              | J1+4                 | 724.40+z  | J1+2                  | Q                  | R=0.8 2.                                                        |
| 809.3 1                | 0.67 1                  | 1580.10+y              | J+4                  | 770.80+y  | J+2                   | E2                 | $E_{\gamma}$ : other: 808.55 5 (1996Se04).<br>R=0.9 2.          |
| 865.7 1                | 0.76 1                  | 2445.81+y              | J+6                  | 1580.10+y | J+4                   | E2                 | $E_{\gamma}$ : other: 864.85 5 (1996Se04).<br>R=0.9 1.          |
| 865.9 1                | 0.99 2                  | 2384.59+z              | J1+6                 | 1518.70+z | J1+4                  | Q                  | R=0.8 2.                                                        |
| 890.2 1                | 0.50 2                  | 890.19+u               | J2+2                 | u         | J2≈(24 <sup>-</sup> ) |                    |                                                                 |
| 929.0 <i>1</i>         | 0.97 2                  | 3313.60+z              | J1+8                 | 2384.59+z | J1+6                  | Q                  | R=1.0 2.                                                        |
| 929.6 1                | 1.00                    | 3375.41+y              | J+8                  | 2445.81+y | J+6                   | E2                 | $E_{\gamma}$ : other: 928.80 5 (1996Se04).<br>R=1.0 <i>I</i> .  |
| 949.6 <i>1</i>         | 0.71 2                  | 1839.79+u              | J2+4                 | 890.19+u  | J2+2                  | Q                  | R=1.2 4.                                                        |
| 995.9 1                | 0.95 1                  | 4371.31+y              | J+10                 | 3375.41+y | J+8                   | E2                 | $E_{\gamma}$ : other: 994.63 5 (1996Se04).<br>R=1.0 <i>1</i> .  |
| 1000.8 1               | 1.00                    | 4314.39+z              | J1+10                | 3313.60+z | J1+8                  | Q                  | R=0.8 2.                                                        |
| 1017.5 <i>1</i>        | 0.76 2                  | 2857.29+u              | J2+6                 | 1839.79+u | J2+4                  |                    |                                                                 |
| 1061.7 <i>1</i>        | 0.89 1                  | 5433.02+y              | J+12                 | 4371.31+y | J+10                  | E2                 | $E_{\gamma}$ : other: 1060.32 5 (1996Se04).<br>R=0.9 <i>I</i> . |
| 1068.5 <i>1</i>        | 0.80 2                  | 5382.89+z              | J1+12                | 4314.39+z | J1+10                 | Q                  | R=1.2 4.                                                        |

Continued on next page (footnotes at end of table)

# $\gamma(^{132}\text{Ce})$ (continued)

| $E_{\gamma}^{\dagger}$ | I <sub>γ</sub> ‡ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$     | $\mathbf{J}_f^{\pi}$ | Mult.# | Comments                                                               |
|------------------------|------------------|------------------------|----------------------|-----------|----------------------|--------|------------------------------------------------------------------------|
| 1088.4 1               | 0.72 2           | 3945.70+u              | J2+8                 | 2857.29+u | J2+6                 | 0      | R=1.1 3.                                                               |
| 1128.8 1               | 0.82 1           | 6561.8+y               | J+14                 | 5433.02+y | J+12                 | E2     | $E_{\gamma}$ : other: 1127.27 6 (1996Se04).<br>R=1.0 /                 |
| 1138.4 <i>1</i>        | 0.86 2           | 6521.3+z               | J1+14                | 5382.89+z | J1+12                | Q      | R=1.4 4.                                                               |
| 1161.4 <i>1</i>        | 0.84 2           | 5107.09+u              | J2+10                | 3945.70+u | J2+8                 | ò      | R=1.3 5.                                                               |
| 1196.4 <i>1</i>        | 0.80 1           | 7758.2+y               | J+16                 | 6561.8+y  | J+14                 | Ē2     | $E_{\gamma}$ : other: 1194.72 <i>6</i> (1996Se04).<br>R=1.0 2.         |
| 1211.3 <i>1</i>        | 0.78 2           | 7732.6+z               | J1+16                | 6521.3+z  | J1+14                | (Q)    | R=0.8 2.                                                               |
| 1228.2 <i>I</i>        | 0.90 2           | 6335.28+u              | J2+12                | 5107.09+u | J2+10                | Q      | R=1.3 4.                                                               |
| 1265.6 <i>1</i>        | 0.72 1           | 9023.8+y               | J+18                 | 7758.2+y  | J+16                 | E2     | $E_{\gamma}$ : other: 1263.63 6 (1996Se04).<br>R=1.0 2.                |
| 1288.5 <i>1</i>        | 0.67 2           | 9021.1+z               | J1+18                | 7732.6+z  | J1+16                | Q      | R=1.1 2.                                                               |
| 1305.3 <i>1</i>        | 1.00             | 7640.6+u               | J2+14                | 6335.28+u | J2+12                | (Q)    | R=1.0 <i>3</i> .                                                       |
| 1336.8 <i>1</i>        | 0.61 1           | 10360.6+y              | J+20                 | 9023.8+y  | J+18                 | E2     | $E_{\gamma}$ : other: 1334.56 7 (1996Se04).<br>R=1.0 2.                |
| 1364.5 <i>1</i>        | 0.53 2           | 10385.6+z              | J1+20                | 9021.1+z  | J1+18                | Q      | R=1.6 4.                                                               |
| 1383.5 <i>1</i>        | 0.85 2           | 9024.1+u               | J2+16                | 7640.6+u  | J2+14                | (Q)    | R=0.9 <i>3</i> .                                                       |
| 1410.7 1               | 0.56 1           | 11771.4+y              | J+22                 | 10360.6+y | J+20                 | E2     | $E_{\gamma}$ : other: 1408.34 <i>9</i> (1996Se04).<br>R=0.9 <i>2</i> . |
| 1453.9 2               | 0.47 2           | 11839.5+z              | J1+22                | 10385.6+z | J1+20                | Q      | R=1.6 4.                                                               |
| 1465.4 <i>1</i>        | 0.70 2           | 10489.5+u              | J2+18                | 9024.1+u  | J2+16                | (Q)    | R=0.9 <i>3</i> .                                                       |
| 1488.1 <i>1</i>        | 0.44 1           | 13259.5+y              | J+24                 | 11771.4+y | J+22                 | E2     | $E_{\gamma}$ : other: 1485.67 <i>10</i> (1996Se04).<br>R=1.0 2.        |
| 1538.3 2               | 0.46 2           | 13377.8+z              | J1+24                | 11839.5+z | J1+22                | Q      | R=1.6 4.                                                               |
| 1541.1 2               | 0.43 2           | 12030.6+u              | J2+20                | 10489.5+u | J2+18                | (Q)    | R=0.7 3.                                                               |
| 1569.4 2               | 0.40 1           | 14828.9+y              | J+26                 | 13259.5+y | J+24                 | E2     | $E_{\gamma}$ : other: 1566.70 <i>10</i> (1996Se04).<br>R=1.0 2.        |
| 1611.5 2               | 0.30 2           | 13642.1+u              | J2+22                | 12030.6+u | J2+20                | (Q)    | R=0.8 <i>3</i> .                                                       |
| 1621.5 2               | 0.17 2           | 14999.3+z              | J1+26                | 13377.8+z | J1+24                | Q      | R=1.1 3.                                                               |
| 1654.9 2               | 0.30 1           | 16483.8+y              | J+28                 | 14828.9+y | J+26                 | E2     | $E_{\gamma}$ : other: 1651.49 <i>12</i> (1996Se04).<br>R=1.0 2.        |
| 1665.4 <i>3</i>        | 0.21 2           | 15307.5+u              | J2+24                | 13642.1+u | J2+22                |        |                                                                        |
| 1730.1 <i>3</i>        | 0.13 2           | 16729.5+z              | J1+28                | 14999.3+z | J1+26                | Q      | R=1.4 <i>3</i> .                                                       |
| 1735.6 <i>3</i>        | 0.24 2           | 17043.1+u              | J2+26                | 15307.5+u | J2+24                |        |                                                                        |
| 1743.9 2               | 0.25 1           | 18227.7+y              | J+30                 | 16483.8+y | J+28                 | Q      | $E_{\gamma}$ : other: 1740.29 <i>14</i> (1996Se04).<br>R=1.1 2.        |
| 1815.2 <i>3</i>        | 0.16 2           | 18858.3+u              | J2+28                | 17043.1+u | J2+26                |        |                                                                        |
| 1816.1 <i>3</i>        | 0.10 2           | 18545.6+z              | J1+30                | 16729.5+z | J1+28                |        |                                                                        |
| 1836.1 2               | 0.21 1           | 20063.8+y              | J+32                 | 18227.7+y | J+30                 | Q      | $E_{\gamma}$ : other: 1832.64 <i>17</i> (1996Se04).<br>R=1.1 2.        |
| 1885.0 4               | 0.17 2           | 20743.4+u              | J2+30                | 18858.3+u | J2+28                |        |                                                                        |
| 1906.6 4               | 0.09 2           | 20452.2+z              | J1+32                | 18545.6+z | J1+30                |        |                                                                        |
| 1931.0 2               | 0.15 1           | 21994.8+y              | J+34                 | 20063.8+y | J+32                 | Q      | $E_{\gamma}$ : other: 1926.50 <i>17</i> (1996Se04).<br>R=1.1 2.        |
| 1953.7 4               | 0.12 2           | 22697.1+u              | J2+32                | 20743.4+u | J2+30                |        |                                                                        |
| 1998.9 5               | 0.06 2           | 22451.1+z              | J1+34                | 20452.2+z | J1+32                |        |                                                                        |
| 2000.7 4               | 0.12 2           | 24697.8+u              | J2+34                | 22697.1+u | J2+32                |        |                                                                        |
| 2027.2 3               | 0.09 1           | 24022.0+y              | J+36                 | 21994.8+y | J+34                 | Q      | $E_{\gamma}$ : other: 2023.50 20 (1996Se04).<br>R=1.1 2.               |
| 2054.2 5               | 0.03 1           | 26752.0+u              | J2+36                | 24697.8+u | J2+34                |        |                                                                        |
| 2085.6 5               | 0.05 2           | 24536.7+z              | J1+36                | 22451.1+z | J1+34                |        |                                                                        |
| 2122.8 4               | 0.05 1           | 26144.8+y              | J+38                 | 24022.0+y | J+36                 | Q      | $E_{\gamma}$ : other: 2119.00 25 (1996Se04).<br>R=1.6 5.               |
| 2215.7 5               | 0.03 1           | 28360.6+y              | J+40                 | 26144.8+y | J+38                 |        |                                                                        |
| 2303 1                 | 0.02 1           | 30663.6+y              | J+42                 | 28360.6+y | J+40                 |        |                                                                        |
| 2418 <i>1</i>          | < 0.01           | 33081.6+y              | J+44                 | 30663.6+y | J+42                 |        |                                                                        |

Continued on next page (footnotes at end of table)

#### $^{100}$ Mo( $^{36}$ S,4n $\gamma$ ):SD 2005Pa30,1995Sa21,1996Cl03 (continued)

## $\gamma(^{132}\text{Ce})$ (continued)

| Eγ <sup>†</sup> | $I_{\gamma}^{\ddagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$     | $\mathbf{J}_f^{\pi}$ |
|-----------------|-------------------------|------------------------|----------------------|-----------|----------------------|
| 2504 1          | < 0.01                  | 35585.6+y              | J+46                 | 33081.6+y | J+44                 |
| 2602 1          | < 0.01                  | 38187.7+y              | J+48                 | 35585.6+y | J+46                 |

<sup>†</sup> From 2005Pa30. Others: 1996Se04, 1995Sa21 and 1987Ki02. 1987Ki02. For SD-1 band, values from 1996Se04 are more precisely quoted than in 2005Pa30, but are systematically lower (by about 1 keV at 800 keV to about 4 keV at 2100 keV) than those in 2005Pa30. In addition, the band is extended in 2005Pa30 by five transitions at the top.

<sup>‡</sup> Relative intensities within each band from 2005Pa30. Others: 1996Cl03, 1995Sa21 and 1987Ki02. <sup>#</sup> From  $\gamma\gamma(\theta)$ ; RUL used when level lifetimes are known In SD-1 band.

2005Pa30,1995Sa21,1996Cl03

<sup>100</sup>Mo(<sup>36</sup>S,4nγ):SD

Legend

#### Level Scheme $\begin{array}{ll} \bullet & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ Intensities: Relative $I_{\gamma}$ + 20542 0.03 + 2000,1 J2+36 26752.0+u + 1933 >1 J2+34 24697.8+u + 18850 1012 J2+32 22697.1+u + 18152 | 0.16 | J2+30 20743.4+u J2+28 18858.3+u + 1005 | 1 0:21 | 4 161,<sup>1</sup> 60,<sup>1</sup> 60,<sup>1</sup> J2+26 17043.1+u 00 J2+24 15307.5+u 92; | (0) 2; | (0) 2; | (0) 4; | (0) 4; | (0) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4; | (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4;\\| (1) 4; <u>J2+22</u> 1541 13642.1+u J2+20 12030.6+u ŝ J2+18 + 13053 0 10489.5+u + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123 J2+16 9024.1+u 0,00 J2+14 7640.6+u 2 11<sup>|</sup> J2+12 ð 6335.28+u ~0 J2+10 5107.09+u 101,5,101 00 J2+8 3945.70+u 0.50 96 - 9.0 J2+6 2857.29+u J2+4 1839.79+u $\frac{J2+2}{J2\approx(24^{-})}$ 890.19+u æ u 10.961 24536.7+z J1+36 1 <sup>1</sup>96:01 J1+34 22451.1+z + 1816, 1010 <u>J1+32</u> 20452.2+z 1 230 , 00131 <u>J1+30</u> + 1621 | 1621 | 100 | 18545.6+z + 15381 + 15381 + 001 J1+28 16729.5+z 100 6.557 + 14999.3+z J1+26 + <sup>1364</sup>, 00 <u>J1+24</u> 13377.8+z J1+22 + 2389 5 00 11839.5+z + 121,3 (0,03) J1+20 10385.6+z + 1/3 000 1 J1+18 9021.1+z 000 J1+16 7732.6+z J1+14 6521.3+z 1050 J1+12 5382.89+z J1+10 4314.39+z

<sup>132</sup><sub>58</sub>Ce<sub>74</sub>

6



<sup>132</sup><sub>58</sub>Ce<sub>74</sub>

| Band(B): SD-2 band (2005Pa30, |            |           |  |  |  |  |
|-------------------------------|------------|-----------|--|--|--|--|
| 1995Sa21,1996Cl03)            |            |           |  |  |  |  |
|                               |            |           |  |  |  |  |
| J1+36                         |            | 24536.7+z |  |  |  |  |
|                               | 2086       |           |  |  |  |  |
| J1+34                         | - <b>t</b> | 22451.1+z |  |  |  |  |
| 11 . 22                       | 1999       | 20452.217 |  |  |  |  |
| J1+32                         | -          | 20452.2+2 |  |  |  |  |
| J1+30                         | 1907       | 18545.6+z |  |  |  |  |
| 11.30                         | 1816       | 1 ( 200 2 |  |  |  |  |
| J1+28                         |            | 16729.5+z |  |  |  |  |
| J1+26                         | 1730       | 14999.3+z |  |  |  |  |
| J1+24                         | 1622       | 13377.8+z |  |  |  |  |
| J1+22                         | 1538       | 11839.5+z |  |  |  |  |
| J1+20                         | 1454       | 10385.6+z |  |  |  |  |
| J1+18                         | 1264       | 9021.1+z  |  |  |  |  |
| J1+16                         | 1304       |           |  |  |  |  |
| J1+14                         | 1288       | 6521.3+z  |  |  |  |  |
| J1+12                         | 1211       | 5382.89+z |  |  |  |  |
| J1+10                         | 1138       | 4314.39+z |  |  |  |  |
| J1+8                          | 1068       | 3313.60+z |  |  |  |  |
| J1+6                          | 1001       | 2384.59+z |  |  |  |  |
| J1+4                          | 929        | 1518.70+z |  |  |  |  |
| J1+2                          | 866        |           |  |  |  |  |
| <u>J1≈(19<sup>−</sup>)</u>    | 794        | <b>z</b>  |  |  |  |  |
|                               |            |           |  |  |  |  |

Band(A): SD-1 band (2005Pa30, 1996Se04,1995Sa21,1987Ki02, 1985No02)

| J+48                             |      | 38187.7+y                     |
|----------------------------------|------|-------------------------------|
| J+46                             | 2602 | 35585.6+y                     |
| J+44                             | 2504 | 33081.6+y                     |
| J+42                             | 2418 | 30663.6+y                     |
| J+40                             | 2303 | 28360.6+y                     |
| J+38                             | 2216 | 26144.8+y                     |
| J+36                             | 2123 | 24022.0+y                     |
| J+34                             | 2027 | 21994.8+y                     |
| J+32                             | 1931 | 20063.8+y                     |
| J+30                             | 1836 | 18227.7+y                     |
| J+28                             | 1744 | 16483.8+y                     |
| J+26                             | 1655 | 14828.9+y                     |
| J+24                             | 1569 | 13259.5+y                     |
| J+22                             | 1488 | 11771.4+y                     |
| J+20                             | 1411 | 10360.6+y                     |
| <u>J+18</u>                      | 1337 |                               |
| J+16                             | 1266 | 7758.2+y                      |
| J+14                             | 1200 | \$501.8+y                     |
| J+12                             | 1196 | 5433.02+y                     |
| J+10                             | 1129 | 43/1.31+y                     |
| J+0                              | 1062 | 2445 81+y                     |
| J+0<br>I+4                       | 990  | $\frac{2775.01+y}{1580.10+y}$ |
|                                  | 866  | 770 80+v                      |
| $\frac{J+2}{I \approx (20)^{+}}$ | 809  | v                             |
| J~(20)                           | 771  | y                             |

<sup>132</sup><sub>58</sub>Ce<sub>74</sub>



<sup>132</sup><sub>58</sub>Ce<sub>74</sub>