$^{131}\mathbf{I}\,\beta^-$ decay

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, I. Mitropolsky, A. Rodionov	NDS 107, 2715 (2006)	17-Jul-2006

Parent: ¹³¹I: E=0.0; $J^{\pi}=7/2^+$; $T_{1/2}=8.0252 \text{ d } 6$; $Q(\beta^-)=970.8 6$; $\%\beta^-$ decay=100.0 1974Me21, 1989Ch45: ¹³¹I(β -) ($T_{1/2}=8$ d); measured E(γ), I(γ), $\gamma\gamma$. Ge(Li) anti-Compton, HPGe and Si(Li) detectors. 1960Jo11, 1972Kr07, 1974Ko02, 1975Ko15: ¹³¹I(β -) decay ($T_{1/2}=8$ d); measured $\gamma(\theta)$. Nuclear orientation study. 1971Gf01, 1972Be90, 1976Ba42: ¹³¹I(β -) decay ($T_{1/2}=8$ d); measured $\gamma\gamma(\theta)$. The level scheme is as given by 1974Me21.

¹³¹Xe Levels

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	Comments
0.0	$3/2^{+}$	stable	
80.1853 19	$1/2^{+}$	0.454 ns 40	$T_{1/2}$: weighted average of 0.496 ns 21 (1962We14) and 0.416 ns 20 (1981Pa21).
163.930 8	$11/2^{-}$	11.86 d 4	$T_{1/2}$: from $\gamma(t)$ (IT decay).
341.144 9	9/2-	1.6 ns 4	$T_{1/2}$: weighted average of 2.15 ns 7 (1973En03) and 1.34 ns 4 (1981Pa21).
364.490 4	$5/2^{+}$	67.5 ps 14	$T_{1/2}$: from 1981Pa21. Other: 47 ps 5 (1966Go20).
404.816 4	$3/2^{+}$	<75 ps	$T_{1/2}$: from 1981Pa21. Other: <500 ps (1973En02).
636.991 4	$7/2^{+}$		
666.934 9	$7/2^{-}$	<0.5 ns	T _{1/2} : from 1973En02.
722.909 4	$5/2^{+}$		

[†] From least-squares fit to $E\gamma's$.

 β^- radiations

E(decay)	E(level)	Ιβ ^{-†‡}	Log ft		Comments	
(247.9 6)	722.909	2.08 3	6.987 8	av Eβ=69.36 25		
(303.9 6)	666.934	0.645 23	7.781 16	av Eβ=86.94 26		
(333.8 6)	636.991	7.23 10	6.864 7	av E β =96.62 26		
(606.3 6)	364.490	89.6 8	6.643 5	av Eβ=191.58 30		
(629.7 6)	341.144	0.050 23	9.95 20	av $E\beta = 200.22 \ 30$		
(806.9 6)	163.930	0.39 9	9.83 ¹ <i>u</i> 10	av Eβ=283.24 <i>31</i>		

[†] From net γ feeding of each level.

[‡] Absolute intensity per 100 decays.

 $\gamma(^{131}\mathrm{Xe})$

Iγ normalization: from $\Sigma I(\gamma+ce)=100$ to g.s. and total feeding of isomeric state 1.086% 7. α (K)exp: from I(ce) measurements of 1962Wo09 normalized to α (K)(284.3, E2)=0.0408.

 \mathbf{b}

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger @}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Mult.	δ#	α ^{&}	Comments
80.185 2	3.21 4	80.1853	1/2+	0.0	3/2+	M1+E2	<0.1	1.544	$\begin{aligned} \alpha(K) &= 1.20 \ 13; \ \alpha(L) &= 0.17 \ 2 \ (1964Da19) \\ \alpha(K) &= 1.324 \ 19; \ \alpha(L) &= 0.1757 \ 25; \ \alpha(M) &= 0.0357 \ 5; \\ \alpha(N+) &= 0.00831 \ 12 \\ \alpha(N) &= 0.00739 \ 11; \ \alpha(O) &= 0.000920 \ 13 \\ \delta: \ from \ from \ \alpha(K) &= p \ and \ \alpha(L) &= p. \\ Mult : D \ from \ comparison \ to \ BUL. \end{aligned}$
85.9 2	0.00011 6	722.909	5/2+	636.991	7/2+	[M1,E2]		2.2 10	$\alpha(\mathbf{K})=1.5\ 5;\ \alpha(\mathbf{L})=0.5\ 4;\ \alpha(\mathbf{M})=0.12\ 9;\ \alpha(\mathbf{N}+)=0.025\ 19$ $\alpha(\mathbf{N})=0.023\ 17;\ \alpha(\mathbf{O})=0.0024\ 17$
163.930 8	0.0259 5	163.930	11/2-	0.0	3/2+	M4		50.5	$\alpha(K) = 31.6 \ 5; \ \alpha(L) = 14.75 \ 21; \ \alpha(M) = 3.38 \ 5; \ \alpha(N+) = 0.767 \ 11 \ \alpha(N) = 0.691 \ 10; \ \alpha(O) = 0.0755 \ 11 \ Isomeric transition. \ I(\gamma+ce) = 1.086\% \ 7 \ (1974Me21).$
177.214 2	0.330 4	341.144	9/2-	163.930	11/2-	M1+E2	-4.3 4	0.240	I _γ : calculated by evaluators. α (K)exp=0.180 <i>12</i> ; K/L=5.1 <i>5</i> ; L1/L2=1.8 <i>7</i> ; L1/L3=2.7 <i>13</i> α (K)=0.187 <i>3</i> ; α (L)=0.0419 <i>7</i> ; α (M)=0.00880 <i>14</i> ; α (N+)=0.00196 <i>3</i> α (N)=0.00177 <i>3</i> ; α (O)=0.000102 <i>3</i>
232.18 15	0.0039 5	636.991	7/2+	404.816	3/2+	[E2]		0.0971	$\alpha(N)=0.0071775, \alpha(O)=0.00019255 \alpha(M)=0.003145; \alpha(N+)=0.0070570$
272.498 17	0.0707 13	636.991	7/2+	364.490	5/2+	M1+E2	-0.38 17	0.0530 9	$\alpha(N)=0.000634 \ 9; \ \alpha(O)=7.09\times10^{-3} \ 10$ $\alpha(K)=0.0453 \ 7; \ \alpha(L)=0.0061 \ 3; \ \alpha(M)=0.00125 \ 6;$ $\alpha(N+)=0.000289 \ 13$
284.305 5	7.51 6	364.490	5/2+	80.1853	1/2+	E2		0.0497	$\alpha(N) = 0.00025772; \alpha(O) = 3.17 \times 10^{-5} 11$ K/L = 5.55; L1/L2 = 2.94; L1/L3 = 3.45 (1962Wo09) $\alpha(K) = 0.04086; \alpha(L) = 0.0071470; \alpha(M) = 0.00147921;$ $\alpha(N+) = 0.0003345$ $\alpha(N) = 0.0002005; \alpha(Q) = 2.42\times 10^{-5}5$
295.8 2	0.0022 10	636.991	7/2+	341.144	9/2-	[E1]		0.01079	$\begin{aligned} \alpha(N) &= 0.000300 \ 5; \ \alpha(O) &= 5.42 \times 10^{-5} \ 5 \\ \alpha(K) &= 0.00933 \ 14; \ \alpha(L) &= 0.001173 \ 17; \ \alpha(M) &= 0.000237 \ 4; \\ \alpha(N+) &= 5.47 \times 10^{-5} \ 8 \\ \alpha(N) &= 4.87 \times 10^{-5} \ 7; \ \alpha(O) &= 5.98 \times 10^{-6} \ 9 \\ L_{*} \ 6 x &= 1080001 \ 45 \end{aligned}$
302.4 2	0.0058 7	666.934	7/2-	364.490	5/2+	[E1]		0.01019	$\alpha(K)=0.00881 \ I3; \ \alpha(L)=0.001107 \ I6; \ \alpha(M)=0.000223 \ 4; \ \alpha(N+)=5.16\times10^{-5} \ 8 \ \alpha(N)=4.59\times10^{-5} \ 7; \ \alpha(O)=5.65\times10^{-6} \ 8$
318.088 <i>16</i>	0.095 2	722.909	5/2+	404.816	3/2+	M1+E2	-0.11 8	0.0350	$\alpha(N)=4.5\times10^{-5}$, $\alpha(C)=2.05\times10^{-5}$ c $(M)=0.000786$ 12; $\alpha(N+)=0.000183$ 3 $\alpha(N)=0.000182$ 25: $\alpha(O)=2.04\times10^{-5}$ 3
324.651 25	0.026 3	404.816	3/2+	80.1853	$1/2^{+}$	M1+E2	-0.8 7	0.0329 6	$\alpha(K) = 0.0280 \ 8; \ \alpha(L) = 0.0040 \ 3; \ \alpha(M) = 0.00081 \ 7;$

 $^{131}_{54}$ Xe₇₇-2

131 I β^- decay (continued)									
$\gamma(^{131}$ Xe) (continued)									
E_{γ}^{\dagger}	I_{γ} [‡] @	E _i (level)	\mathbf{J}_i^π	E_{f}	\mathbf{J}_f^{π}	Mult.	$\delta^{\#}$	α &	Comments
325.789 4	0.335 26	666.934	7/2-	341.144	9/2-	M1+E2	-0.23 4	0.0329	$\begin{aligned} \alpha(\text{N}+) &= 0.000187 \ 14 \\ \alpha(\text{N}) &= 0.000167 \ 13; \ \alpha(\text{O}) &= 2.02 \times 10^{-5} \ 10 \\ \alpha(\text{K}) &= 0.034 \ 4 \\ \alpha(\text{K}) &= 0.0283 \ 4; \ \alpha(\text{L}) &= 0.00367 \ 6; \ \alpha(\text{M}) &= 0.000745 \ 11; \\ \alpha(\text{N}+) &= 0.000173 \ 3 \end{aligned}$
358.4 2	0.020 7	722.909	5/2+	364.490	5/2+	[M1,E2]		0.0248 10	α (N)=0.0001541 23; α (O)=1.92×10 ⁻⁵ 3 α (K)=0.0210 12; α (L)=0.00301 18; α (M)=0.00062 5; α (N+)=0.000141 8
364.489 5	100.0 7	364.490	5/2+	0.0	3/2+	M1+E2	-4.53 12	0.0228	$\alpha(N)=0.000126 \ 8; \ \alpha(O)=1.53\times10^{-5} \ 4 \\ \alpha(K)\exp=0.0192 \ 11 \\ \alpha(K)=0.0191 \ 3; \ \alpha(L)=0.00299 \ 5; \ \alpha(M)=0.000615 \ 9; \\ \alpha(N+)=0.0001401 \ 20$
404.814 4	0.067 2	404.816	3/2+	0.0	3/2+	M1+E2	+1.0 9	0.0177 12	$\begin{aligned} &\alpha(N)=0.0001254 \ I8; \ \alpha(O)=1.473\times10^{-5} \ 21 \\ &\delta: \ \gamma(\theta) \text{ from oriented } ^{131}I \ (1974Ko02). \ Others: \ \delta=-6.7 \ 5 \\ &(1971Kr07), \ \delta=-4.7 \ 3 \ (1964Da19). \\ &\alpha(K)=0.0151 \ I3; \ \alpha(L)=0.00210 \ 4; \ \alpha(M)=0.000429 \ I1; \\ &\alpha(N+)=9.88\times10^{-5} \ I7 \\ &\alpha(N)=8.81\times10^{-5} \ I7; \ \alpha(O)=1.072\times10^{-5} \ 24 \end{aligned}$
x449.6 2 503.004 4	0.009 <i>3</i> 0.441 <i>4</i>	666.934	7/2-	163.930	11/2-	E2		0.00883	α (K)exp=0.0074 9 α (K)=0.00748 11; α (L)=0.001083 16; α (M)=0.000221 3;
636.989 4	8.78 11	636.991	7/2+	0.0	3/2+	E2		0.00470	$\alpha(N+)=5.08\times10^{-5} 8$ $\alpha(N)=4.53\times10^{-5} 7; \alpha(O)=5.44\times10^{-6} 8$ $\alpha(K)\exp=0.0042 3$ $\alpha(K)=0.00401 6; \alpha(L)=0.000551 8; \alpha(M)=0.0001123 16;$ $\alpha(N+)=2.59\times10^{-5} 4$
642.719 <i>5</i>	0.266 5	722.909	5/2+	80.1853	1/2+	[E2]		0.00459	$\alpha(N)=2.31\times10^{-5} 4; \ \alpha(O)=2.81\times10^{-6} 4$ $\alpha(K)=0.00392 6; \ \alpha(L)=0.000538 8; \ \alpha(M)=0.0001096 \ I6;$ $\alpha(N+)=2.53\times10^{-5} 4$
722.911 5	2.17 3	722.909	5/2+	0.0	3/2+	M1+E2	+0.207 5	0.00459	$\alpha(N)=2.25\times10^{-5} 4; \ \alpha(O)=2.74\times10^{-6} 4$ $\alpha(K)\exp=0.0038 3$ $\alpha=0.00459; \ \alpha(K)=0.00394; \ \alpha(L)=0.00049$

 $\boldsymbol{\omega}$

[†] From 1990Me15.
[‡] Weighted average of 1990Me15, 1989Ch45, 1980VyZZ.
[#] From γγ(θ) and γ(θ) as adopted by 1977Kr13. Phase convention changed to the standard for Nuclear Data Sheets by the evaluators.
[@] For absolute intensity per 100 decays, multiply by 0.815 5.
[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

