Adopted Levels, Gammas

		History						
	Туре	Author	Citation	Literature Cutoff Date				
	Full Evaluation	Yu. Khazov, I. Mitropolsky, A. Rodionov	NDS 107,2715 (2006)	17-Jul-2006				
$Q(\beta^-)=4710\ 6$; $S(n)=5211\ 7$; $S(p)=1.468\times10^4\ 4$; $Q(\alpha)=-11207\ 15\ 2012Wa38$ Note: Current evaluation has used the following Q record 4674 11 5247 24 14710 40-11220 80 2003Au03. $Q(\beta^-)=4698\ 11\ (2004Fo06).$ Charge radii and moments measurements: 2002Le30, 2004Le13, 2005Le34.								

Mass measurements: 2002BoZX, 2005Si34.

¹³¹Sn Levels

Cross Reference (XREF) Flags

		I I C	A ¹³¹ Ir ¹³¹ Ir ¹³¹ Ir ¹³¹ Ir	$\begin{array}{ll} & \beta^{-} \operatorname{decay} \left(0.28 \text{ s} \right) & D & {}^{132} \mathrm{In} \ \beta^{-} n \ \mathrm{decay} \\ & \alpha \ \beta^{-} \ \mathrm{decay} \left(0.35 \text{ s} \right) & E & {}^{248} \mathrm{Cm} \ \mathrm{SF} \ \mathrm{decay} \\ & \alpha \ \beta^{-} \ \mathrm{decay} \left(0.32 \text{ s} \right) \end{array}$
E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	XREF	Comments
0.0	(3/2 ⁺) [@]	56.0 [#] s 5	AB	%β ⁻ =100 μ=+0.747 4 (2004Le13,2005Le34) Q=-0.04 8 (2004Le13) T _{1/2} : other: 39 s 2 (1977Sc14; 798γ(t)). Mean square charge radius: Δ <r<sup>2>(¹³¹Sn-¹²⁰Sn)=+0.52 fm² 7; charge radius r=4.708 fm 7 (2005Le34). μ,Q: hyperfine structure using LASER spectroscopy.</r<sup>
0.0+x	(11/2 ⁻) [@]	58.4 [#] s 5	ΑСΕ	$^{\beta\beta}$ ≈100; %IT=? μ =-1.276 5 (2004Le13,2005Le34) Q=+0.02 20 (2004Le13,2005Le34) From the β spectrum x=69 14; or x=65.1 3 from the level scheme (2004Fo06). E(level): level energy held fixed in least-squares adjustment. Mean square charge radius: Δ <r<sup>2>(¹³¹Sn-¹²⁰Sn)=+0.55 fm² 7; charge radius r=4.711 fm 7 (2005Le34). μ,Q: hyperfine structure using LASER spectroscopy. T_{1/2}: others: 50 s 2 (1977Sc14; 305, 450, 1226γ(t)) and 61 s 1 (1981Hu09; 304, 450, 798, 1226γ(t)).</r<sup>
331.73 10	$(1/2^+)$		В	J ^{π} : γ to (3/2 ⁺); β feeding from (1/2 ⁻); probable (ν s _{1/2}) ⁻¹ state.
1654.53 8	$(5/2^+)$		AB	J ^{π} : γ to (3/2 ⁺); β feeding from (1/2 ⁻); probable ($\nu d_{5/2}$) ⁻¹ state.
2434.13 7	$(7/2^+)$		A	J ^{π} : possible allowed β transition from (9/2 ⁺); γ to (3/2 ⁺); probable ($\nu g_{7/2}$) ⁻¹ state.
3909.6 6 3989.93 <i>19</i>	(1/2,3/2) $(7/2^+)$ $(15/2^-)$		A A	J^{π} : γ to $(3/2^+)$; possible β feeding from $(9/2^+)$.
$4102.01 + x^{b}$ 8	(13/2)		E	
$4220.1 + x^{2} 0$	(15/2)		E	
4247.1+X° 8 4262.2.7	$(15/2^{+})$		A	
4273.22+x ^b 18 4352.7 7 4404.8 4	(17/2 ⁺)	<0.2 ns	CE A A	
4423.1+x ^{<i>a</i>} 6	$(15/2^+)$		Е	
4429.6 5	(1/2, 3/2)		В	
4446.41+x ^{α} 18 4487.08 20	$(19/2^{-})$ $(7/2^{+})$	<0.2 ns	C E A	J^{π} : (E1) γ to (17/2 ⁺). J^{π} : γ to (3/2 ⁺); possible β feeding from (9/2 ⁺).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹³¹Sn Levels (continued)

E(level)	J^{π}	T _{1/2} ‡	XREF	Comments
4510.6+x ^{&} 8 4557.85+x ^a 21 4575.8 5	(17/2 ⁻) (19/2 ⁺) 1/2,3/2	<2 ns	E CE B	J^{π} : (M1,E2) γ to (17/2 ⁺).
$4576.1 + x^{a} 6$	$(17/2^+)$ $(22/2^-)$	200 ng 20	E	I^{π} , E2 or to $(10/2^{-})$
4705.6+x? <i>4</i>	(25/2)	500 lis 20	C	$J : E2 \gamma to (19/2).$
4743.4+x ^{&} 11 4768.6+x? 13	(21/2 ⁻)		E E	
4770.775 4989.9+x ^a 11 5111.9 7	(21/2+)		A E A	
5215.7 5 6653.61+x 24	(19/2+,21/2+)		A C	J ^π : log <i>ft</i> =4.5 from (21/2 ⁺); γ 's to (17/2 ⁺) and (19/2 ⁺). Analogy of β^- decay with $(\pi g_{9/2})^{-1} \rightarrow (\nu g_{7/2})^{-1}$ in odd-In isotopes suggests this level as a member of the $\nu(g_{7/2}g_{7/2}^{-1}h_{11/2}^{-1})$ multiplet with $J^{\pi}=19/2^+$.

[†] Above the g.s. and the isomer state as proposed by 1984Fo19, 1984Fo03 and 2001Bh04, based on shell model considerations and partly on β- decay systematics (2004Fo06). [‡] From $\gamma\gamma$ (t) ¹³¹In 0.32 s 21/2⁻ β⁻ decay, except as noted.

[#] From 1986StZZ; $\gamma(t)$. Discrepancy in T_{1/2} from 798 $\gamma(t)$ between 1977Sc14 and 1981Hu09 is unresolved. Others (isomers unresolved): 65 s 6 (1974F006), 51.5 s 4 and 58.1 s 6 (1974Gr29), and 62.9 s 25 (1972Iz01). See 1978Iz03, 1976Au03, and 1974Gr29 for additional references.

^(a) From systematics of $d_{3/2}$ and $h_{11/2}$ hole states in odd-A Sn nuclides near A=132. Hyperfine interactions measurements and experimental multipole moments (2002Le30,2004Le13) are consistent with 3/2+and 11/2⁻ assignments.

& Band(A): $\nu(f_{7/2}h_{11/2}^{-1})$ multiplet (2001Bh04).

^{*a*} Band(B): $\nu(f_{7/2}h_{11/2}^{-1}d_{3/2}^{-1})$ multiplet (2001Bh04).

^b Band(C): $\nu h_{11/2}^{-1} \otimes (3^{-} \text{ octupole})$ multiplet (2001Bh04).

Adopted Levels, Gammas (continued)									
$\underline{\gamma(^{131}Sn)}$									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	α &	Comments	
331.73	$(1/2^+)$ (5/2 ⁺)	331.72 10	100	0.0	$(3/2^+)$ $(3/2^+)$	[M1,E2]	0.0239 18	E_{γ}, I_{γ} : from 0.35 s ¹³¹ In β^- decay.	
2434.13	$(7/2^+)$	779.64 10	1.9 3	1654.53	$(5/2^+)$ $(5/2^+)$	[M1]	0.00276	B(M1)(W.u.)≈0.002 (1984Fo03) B(M1)↓: from Iγ's and calculated B(E2)(2434γ). In order of magnitude this is consistent with <i>l</i> -forbidden M1 transition rates around ²⁰⁸ Pb (1984Fo03).	
3909.6 3989.93	(1/2,3/2) $(7/2^+)$	2434.08 7 3577.8 6 1555.6 5	100 100 3.7 9	0.0 331.73 2434.13	$(3/2^+)$ $(1/2^+)$ $(7/2^+)$				
4102.01+x 4220.1+x 4247.1+x	$(15/2^{-})$ $(13/2^{+})$ $(15/2^{+})$	3989.9 [‡] 2 4102 4220 4247	100 100 100 100	0.0 0.0+x 0.0+x 0.0+x	$(3/2^+) (11/2^-) (11/2^-) (11/2^-) (11/2^-)$				
4262.2 4273.22+x	(17/2+)	$4262.1^{@}$ 7 171.1 3	$100 \\ 1.5 4 \\ 100^{\dagger}$	0.0 4102.01+x	$(3/2^+)$ $(15/2^-)$				
4352.7 4404.8		4273.20+ 20 4352.6 [@] 7 2750.0 5 4404 9 4	100+ 100 64 20 100	0.0+x 0.0 1654.53 0.0	(11/2) $(3/2^+)$ $(5/2^+)$ $(3/2^+)$				
4423.1+x	(15/2+)	150 203 321	64 100 64	4273.22+x 4220.1+x 4102.01+x	$(17/2^+)$ $(13/2^+)$ $(15/2^-)$		2		
4429.6	(1/2,3/2)	4423 4097.6 <i>10</i> 4429.6 5	64 67 <i>30</i> 100	0.0+x 331.73 0.0	$(11/2^{-})$ $(1/2^{+})$ $(3/2^{+})$	[M2]	1.13×10 ⁻³		
4446.41+x	(19/2 ⁻)	$173.185^{\ddagger} 23$ $344.40^{\#} 3$	100 [‡] 15 2	4273.22+x 4102.01+x	$(17/2^+)$ $(15/2^-)$	(E1)	0.0384	B(E1)(W.u.)>0.00020	
		4446.0 [#] 5	8 2	0.0+x	$(11/2^{-})$	[E4]	1.67×10^{-4}	B(E4)(W.u.)>68	
4487.08 4510.6+x	$(7/2^+)$ $(17/2^-)$	$4487.00^{4}20$ 63^{a} 238 408	100 32 100	0.0 4446.41+x 4273.22+x 4102.01+x	$(3/2^+) (19/2^-) (17/2^+) (15/2^-)$				
4557.85+x 4575.8	(19/2 ⁺) 1/2,3/2	284.67 [‡] 10 4242.5 12 4576 0 5	100 [‡] 40 <i>20</i> 100	4273.22+x 331.73	$(17/2^+)$ $(1/2^+)$ $(3/2^+)$	(M1,E2)	0.037 5		
4576.1+x	(17/2 ⁺)	303 329 474	50 100 50	4273.22+x 4247.1+x 4102.01+x	$(3/2^{+})$ $(17/2^{+})$ $(15/2^{+})$ $(15/2^{-})$				

ω

From ENSDF

 $^{131}_{50}{
m Sn}_{81}$ -3

L

Adopted Levels, Gammas (continued)

$\gamma(^{131}$ Sn) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α &	Comments
4576.1+x	$(17/2^+)$	4576	50	0.0+x	$(11/2^{-})$	[E3]	1.18×10^{-3}	
4604.91+x	(23/2 ⁻)	158.50 [‡] <i>10</i>	100 [‡]	4446.41+x	$(19/2^{-})$	E2	0.313	B(E2)(W.u.)=0.363 25
4705.6+x?		259.2 <i>3</i>	100	4446.41+x	$(19/2^{-})$			
4743.4+x	$(21/2^{-})$	297	100	4446.41+x	$(19/2^{-})$			
4768.6+x?		258	100	4510.6+x	$(17/2^{-})$			
4770.7?		4770.6 ^{@a} 5	100	0.0	$(3/2^+)$			
4989.9+x	$(21/2^+)$	432	100	4557.85+x	$(19/2^+)$			
5111.9		2677.7 7	100 2	2434.13	$(7/2^+)$			
5215.7		5215.6 [@] 5	100 4	0.0	$(3/2^+)$			
6653.61+x	$(19/2^+, 21/2^+)$	2095.9 [‡] 2	100 [‡] 20	4557.85+x	$(19/2^+)$			
		2380.2 [‡] 2	66 [‡] 17	4273.22+x	$(17/2^+)$			

4

[†] From ¹³¹In 9/2⁺ 0.28 s β^- decay, except as noted. [‡] From ¹³¹In 21/2⁻ 0.32 s β^- decay. [#] From ²⁴⁸Cm SF decay only. [@] May belong to the decay of 0.35 s 1/2⁻ ¹³¹In isomer.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Placement of transition in the level scheme is uncertain.

From ENSDF

 $^{131}_{50}{
m Sn}_{81}$

Adopted Levels, Gammas

