$^{131}{\rm Nd}\ \varepsilon$ decay 1996Ge12,1993GeZZ

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, I. Mitropolsky, A. Rodionov	NDS 107, 2715 (2006)	17-Jul-2006

Parent: ¹³¹Nd: E=0.0; $J^{\pi}=(5/2^+)$; $T_{1/2}=26.0 \text{ s}$ 11; $Q(\varepsilon)=6510 \ 60$; $\%\varepsilon + \%\beta^+$ decay=100.0 1996Ge12: ¹³¹Nd ε decay [from ⁹⁴Mo(⁴⁰Ca,2pn), E=255 MeV]; measured E γ , I γ , ce, $\gamma\gamma$, x γ , ce γ (t), x γ (t). He-jet transport, magnetic selector, Ge, Si(Li) detectors.

Others: 1996Gi08, 1983ViZU.

131	Pr	Levels
-----	----	--------

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	3/2+	1.51 min 2	$T_{1/2}$: from Adopted Levels.
87.57 12	5/2+		·/- 1
251.69 15	7/2+		
261.95 13	$(5/2, 7/2)^+$		
448.51 18	9/2+		
450.11 17	7/2+		
515.74 <i>19</i>	$(3/2, 5/2, 7/2)^+$		
556.93 19	$(5/2, 7/2, 9/2)^+$		
571.96 <i>21</i>			
668.87 20	$(7/2, 9/2)^+$		
679.6 <i>3</i>	$11/2^+$		
680.97 <i>21</i>			
724.07 17			
772.6 5			
787.50 21			
799.0 4			
828.58 25			
892.5 4			
923.64 22	in in Li		
975.29 19	$(9/2^+)$		
1075.99 18			
1239.7 7			

[†] From least-squares fit to $E\gamma's$.

[±] As in 1996Ge12: from multipolarities of γ 's, level scheme and systematics.

ε, β^+ radiations

E(decay)	E(level)	Ιβ ⁺ ‡	$\mathrm{I}\varepsilon^{\dagger\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
$(5.27 \times 10^3 \ 6)$	1239.7	1.41 18	0.25 3	6.23 7	1.66 21	av Eβ=1943 29; εK=0.129 5; εL=0.0179 7; εM+=0.00505 19
$(5.43 \times 10^3 6)$	1075.99	0.87 20	0.14 3	6.51 11	1.01 23	av Eβ=2020 29; εK=0.117 5; εL=0.0162 6; εM+=0.00460 17
$(5.53 \times 10^3 6)$	975.29	0.88 20	0.13 3	6.56 11	1.01 23	av Eβ=2068 29; εK=0.111 4; εL=0.0153 6; εM+=0.00434 15
$(5.59 \times 10^3 \ 6)$	923.64	2.8 3	0.41 5	6.07 7	3.2 4	av E β =2092 29; ε K=0.107 4; ε L=0.0149 6; ε M+=0.00421 15
$(5.62 \times 10^3 6)$	892.5	1.33 20	0.19 3	6.41 8	1.52 23	av Eβ=2107 29; εK=0.106 4; εL=0.0146 5; εM+=0.00414 15
$(5.68 \times 10^3 \ 6)$	828.58	2.6 4	0.35 5	6.16 7	2.9 4	av E β =2137 29; ε K=0.102 4; ε L=0.0141 5; ε M+=0.00400 14
$(5.71 \times 10^3 6)$	799.0	2.1 4	0.28 5	6.25 8	2.4 4	av E β =2151 29; ε K=0.100 4; ε L=0.0139 5; ε M+=0.00393

Continued on next page (footnotes at end of table)

¹³¹ Nd ε decay	1996Ge12,1993GeZZ	(continued)
---------------------------------------	-------------------	-------------

ϵ, β^+ radiations (continued	I)
---	----

E(decay)	E(level)	$\mathrm{I}\beta^+$ ‡	$\mathrm{I}\varepsilon^{\dagger\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
						14
$(5.72 \times 10^3 6)$	787.50	2.5 4	0.33 5	6.19 7	2.8 4	av Eβ=2157 29; εK=0.100 4; εL=0.0138 5; εM+=0.00391 14
$(5.74 \times 10^3 6)$	772.6	0.60 11	0.079 15	6.81 9	0.68 13	av Eβ=2164 29; εK=0.099 4; εL=0.0137 5; εM+=0.00388 13
$(5.79 \times 10^3 6)$	724.07	2.8 4	0.36 6	6.15 8	3.2 5	av Eβ=2187 29; εK=0.096 4; εL=0.0133 5; εM+=0.00377 13
$(5.83 \times 10^3 6)$	680.97	2.2 4	0.28 5	6.28 8	2.5 4	av Eβ=2207 29; εK=0.094 4; εL=0.0130 5; εM+=0.00369 13
$(5.83 \times 10^3 \ 6)$	679.6	1.05 19	0.131 24	6.60 9	1.18 21	av Eβ=2208 29; εK=0.094 4; εL=0.0130 5; εM+=0.00368 13
$(5.84 \times 10^3 6)$	668.87	3.3 5	0.41 7	6.11 8	3.7 6	av Eβ=2213 29; εK=0.093 3; εL=0.0130 5; εM+=0.00366 13
$(5.94 \times 10^3 6)$	571.96	3.3 4	0.39 5	6.15 7	3.7 5	av Eβ=2259 29; εK=0.089 3; εL=0.0123 4; εM+=0.00348 12
$(5.95 \times 10^3 \ 6)$	556.93	6.9 8	0.80 10	5.84 6	7.7 9	av Eβ=2266 29; εK=0.088 3; εL=0.0122 4; εM+=0.00345 12
$(5.99 \times 10^3 6)$	515.74	4.0 6	0.46 7	6.08 8	4.5 7	av Eβ=2286 29; εK=0.086 3; εL=0.0119 4; εM+=0.00337 11
$(6.06 \times 10^3 \ 6)$	450.11	9.4 11	1.02 12	5.75 6	10.4 12	av Eβ=2317 29; εK=0.083 3; εL=0.0115 4; εM+=0.00326 11
$(6.06 \times 10^3 \ 6)$	448.51	5.9 9	0.64 10	5.95 8	6.5 10	av $E\beta$ =2318 29; ε K=0.083 3; ε L=0.0115 4; ε M+=0.00326 11
$(6.25 \times 10^3 \ 6)$	261.95	15.2 17	1.49 18	5.61 6	16.7 <i>19</i>	av E β =2407 29; ε K=0.0756 24; ε L=0.0105 4; ε M+=0.00296 10
$(6.26 \times 10^3 \ 6)$	251.69	7.7 13	0.75 13	5.91 8	8.5 14	av Eβ=2412 29; εK=0.0752 24; εL=0.0104 4; εM+=0.00294 10
$(6.42 \times 10^3 \ 6)$	87.57	17 10	1.5 9	5.6 3	19 11	av E β =2490 29; ε K=0.0693 21; ε L=0.0096 3; ε M+=0.00271 9

[†] From net feeding of each level assuming no feeding to g.s.
[‡] Absolute intensity per 100 decays.

$\gamma(^{131}\text{Pr})$

I γ normalization: from $\Sigma I_{\gamma}(1+ce)=100$ to g.s. All data from 1996Ge12, except as noted.

Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	α@	Comments
87.6 2	180 20	87.57	5/2+	0.0	3/2+	M1	1.93	$ \begin{array}{l} \alpha(\text{L}) \exp = 0.26 \ 9; \ \text{K/L} = 8 \ 2 \\ \alpha(\text{K}) = 1.64 \ 5; \ \alpha(\text{L}) = 0.226 \ 7; \\ \alpha(\text{M}) = 0.0474 \ 15; \ \alpha(\text{N}+) = 0.0130 \ 4 \end{array} $
164.2 2	100	251.69	7/2+	87.57	5/2+	M1,(E2)	0.35 3	α (K)exp=0.24 6; K/L=9 4 α (K)=0.272 5; α (L)=0.061 23; α (M)=0.013 6; α (N+)=0.0035 14
174.5 2	76 <i>3</i>	261.95	(5/2, 7/2)+	87.57	5/2+	M1,E2	0.289 15	α (K)exp=0.23 7; K/L=4 2 α (K)=0.227 7; α (L)=0.049 17; α (M)=0.010 4; α (N+)=0.0028 10
188.4 <i>3</i> 196.7 <i>3</i>	2.5 5 26 <i>3</i>	450.11 448.51	7/2+ 9/2+	261.95 251.69	(5/2, 7/2) ⁺ 7/2 ⁺			

Continued on next page (footnotes at end of table)

	¹³¹ Nd ε decay 1996Ge12,1993GeZZ (continued)								
$\gamma(^{131}\text{Pr})$ (continued)									
Eγ	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	${ m J}_f^\pi$	Comments			
198.5 5	6.5 15	450.11	7/2+	251.69	7/2+				
220.5 2	51	668.87	$(7/2, 9/2)^+$	448.51	9/2+				
251.6 4	14.0 15	251.69	7/2+	0.0	3/2+				
253.8 4	4.5 0	515.74 261.05	$(3/2, 5/2, 1/2)^+$	261.95	$(5/2, 1/2)^{+}$				
201.9 2	24 2	201.95	$(5/2, 7/2)^{+}$	251.60	3/2* 7/2+				
310.0 4	505	571.96	(3/2, 7/2, 9/2)	251.09	$(5/2 \ 7/2)^+$				
360.8.3	22.2	448 51	9/2+	87 57	(3/2, 7/2) $5/2^+$				
362.6.3	46 2	450.11	7/2+	87.57	5/2+				
406.8 4	3.7 10	668.87	$(7/2, 9/2)^+$	261.95	$(5/2, 7/2)^+$				
417.1 4	8.0 15	668.87	$(7/2, 9/2)^+$	251.69	7/2+				
419.5 5	1.8 8	680.97		261.95	$(5/2, 7/2)^+$				
427.9 2	71	679.6	$11/2^+$	251.69	7/2+				
428.2 2	11 2	515.74	$(3/2, 5/2, 7/2)^+$	87.57	5/2+				
450.0 3	8 1	450.11	7/2+	0.0	$3/2^{+}$				
^x 460.5 [†] 3	64 20								
462.1 2	4.2 4	724.07		261.95	$(5/2, 7/2)^+$				
469.4 2	24.5 15	556.93	$(5/2, 7/2, 9/2)^+$	87.57	5/2+				
484.4 2	17 <i>1</i>	571.96		87.57	5/2+				
515.6 4	11 2	515.74	$(3/2, 5/2, 7/2)^+$	0.0	3/2+				
525.4 ^{&} 3	1.5 4	787.50		261.95	$(5/2, 7/2)^+$	I_{γ} : from level scheme in authors' fig.5; I(tot)=3.4 4 in Table 2 (1996Ge12).			
525.4 ^{&} 3	1.5 ^{&} 4	975.29	(9/2 ⁺)	450.11	7/2+	I_{γ} : from level scheme in authors' fig.5; I(tot)=3.4 4 in Table 2 (1996Ge12).			
526.7 1	2.5 5	975.29	$(9/2^+)$	448.51	9/2+				
535.9 <i>3</i>	3.0 5	787.50		251.69	7/2+				
547.3 <i>3</i>	14.0 15	799.0		251.69	7/2+				
576.8 3	71	828.58		251.69	7/2+				
581.1 3	51	668.87	$(1/2, 9/2)^+$	87.57	5/2+ 5/2+				
593.3 3	/ 1	080.97		87.57	$\frac{5}{2^+}$				
636.5.3	2.00	724.07		87 57	9/2 5/2 ⁺				
$x_{6,11} = \frac{1}{5} x_{6,11}$	- T I 54 12	124.01		07.57	5/2				
041.3 4	34 12								
^668.01 2	84 16	(00.07		0.0	2/2+				
685.0 <i>4</i>	01	080.97		0.0	3/2 · 5/2+				
700.0.3	4.00	787.50		87.57	5/2 5/2 ⁺				
724.0.3	2.1	975 29	$(9/2^+)$	251.69	$\frac{3}{2}^{+}$				
724.1 3	11 7	724.07	()/2)	0.0	$3/2^+$				
741.1 3	10 1	828.58		87.57	5/2+				
804.9 3	91	892.5		87.57	5/2+				
824.3 1	4 1	1075.99		251.69	7/2+				
835.8 <i>3</i>	8.0 8	923.64		87.57	5/2+				
923.9 <u>3</u>	11 <i>1</i>	923.64		0.0	3/2+				
^x 1118.0 [†] 5	48 24								
1152.0 8	4.5 5	1239.7		87.57	5/2+				
^x 1183.4 [†]	≈64								
1240 1	5.3 5	1239.7		0.0	3/2+				

 † Assigned to $^{131}\text{Nd}~\varepsilon$ decay by 1983ViZU on the basis of partial $T_{1/2}{<}30$ s.

[‡] From $\alpha(\exp)$.

¹³¹Nd ε decay 1996Ge12,1993GeZZ (continued)

$\gamma(^{131}\text{Pr})$ (continued)

[#] For absolute intensity per 100 decays, multiply by 0.169 17.

- [@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- [&] Multiply placed with intensity suitably divided.

 $x \gamma$ ray not placed in level scheme.

S

From ENSDF

 $^{131}_{59} Pr_{72}\text{--}5$

 $^{131}_{59} \mathrm{Pr}_{72} \text{-} 5$