¹⁰⁰Mo(³⁶S,p4nγ) 2000Wa28,2001Pa25

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Yu. Khazov, I. Mitropolsky, A. Rodionov	NDS 107, 2715 (2006)	17-Jul-2006					

2000Wa28: ¹⁰⁰Mo(³⁶S,p4n γ), E=160 MeV. Measured E γ and $\gamma\gamma$ using EUROBALL IV spectrometer containing a 161-element inner BGO ball.

Evaluators used data from 2000Wa28 and corresponding XUNDL file.

2001Pa25: ¹⁰⁰Mo(³⁷Cl,α2nγ), E=155 MeV. Measured Eγ, γγ(θ), γγ, Doppler shifts, deduced J^π, transition quadrupole moments. EUROGAM II spectrometer with 54 HPGe detector including 24 "clover" detectors, DSA method.
2003Gr32 (also 2004Gr06): ¹²²Sn(¹⁴N,5nγ), E=70MeV; measured T_{1/2} by DSA method, deduced B(E2) for transitions of the

2003Gr32 (also 2004Gr06): ¹²²Sn(¹⁴N,5n γ), E=70MeV; measured T_{1/2} by DSA method, deduced B(E2) for transitions of the $\pi h_{11/2}$ band. OSIRIS-II multidetector array.

¹³¹La Levels

The level scheme is from 2000Wa28 and 2001Pa25 on the basis of $\gamma\gamma$ coincidence data; spin-parity assignments are from angular correlation analysis.

E(level) [†]	\mathbf{J}^{π}	Comments
0.0^{\ddagger}	3/2+	
26.21 [‡] 4	$5/2^{+}$	Additional information 1.
195.65 [‡] 4	7/2+	Additional information 2.
304.6 [#] 3	$11/2^{-}$	
640.6 [#] 6	$15/2^{-}$	
1173.6 [#] 8	19/2-	
1844.5 [#] 9	$23/2^{-}$	
2234.6 [@] 9	$19/2^{+}$	
2636.7 [#] 10	$27/2^{-}$	
2677.7 [@] 9	$23/2^+$	
3143.9 ^{&} 10	$25/2^+$	
3265.9 [@] 10	$27/2^+$	
3536.7 [#] 11	31/2-	
3686.6 ^{&} 10	$29/2^+$	
3971.4 ^{@} 10	$31/2^{+}$	
4374.3 ^{&} 11	33/2+	
4520.7 [#] 12	$35/2^{-}$	
4772.9 ^{^w} 11	$35/2^+$	
$5208.3^{\circ}_{\#}$ 12	37/2+	
5573.7# 13	39/2-	
5650.9 ^w 12	39/2+	
6137.3 ^{cc} 13	41/2+	
6597.9 [•] 13	43/2+	
6663.7" 14	43/2-	
7146.3°° 14	$(45/2^{+})$	
7613.9 ^e 14	$(4^{\prime}/2^{\prime})$	
7730.7" 15	$(4^{\prime}/2)$	
$\delta_{24} \delta_{.5} = 15$	$(49/2^{+})$	
8/01.9 = 15	$(51/2^{-})$	
0039./" 10	(31/2)	

¹⁰⁰Mo(³⁶S,p4nγ) 2000Wa28,2001Pa25 (continued)

¹³¹La Levels (continued)

E(level) [†]	J^{π}	E(level) [†]	J^{π}	E(level) [†]	J^{π}	E(level) [†]	J^{π}
9434.3 ^{&} 16 9872.9 [@] 16 10694.3 ^{&} 16	$(53/2^+)$ $(55/2^+)$ $(57/2^+)$	11138.9 [@] 17 12028.3 ^{&} 17 12507.9 [@] 17	$(59/2^+)$ $(61/2^+)$ $(63/2^+)$	13457.3 ^{&} 18 13979.9 [@] 18 14999.3 ^{&} 19	$(65/2^+) (67/2^+) (69/2^+)$	15558.9 [@] 19 17247.9 [@] 19	(71/2 ⁺) (75/2 ⁺)

[†] From least-squares fit to $E\gamma'$ s, assuming $\Delta(E\gamma)=0.5$ keV for all γ' s (by evaluator), except as noted.

[‡] From ¹³¹Ce ε decay (10.3 min).

[#] Band(A): band based on Configuration= $(\pi h_{11/2}), (\alpha = -1/2).$

^(a) Band (B): Band based on configuration= $(\pi g_{7/2})(\pi h_{11/2})^2$, $(\alpha = -1/2)$, $Q_t \approx 2.3$ eb, $\beta_2 \approx 0.14$.

& Band(C): Band based on configuration= $(\pi g_{7/2})(\pi h_{11/2})^2$, $(\alpha = +1/2)$.

 $\gamma(^{131}\text{La})$

B(E2): values are copied by evaluators from fig.2 of 2003Gr32.

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Comments
26.20 [‡] 5	26.21	$5/2^{+}$	0.0	3/2+	
108.9 3	304.6	$11/2^{-}$	195.65	$7/2^+$	E_{γ} : from ¹³¹ La IT decay (170 μ s).
169.42 [‡] 5	195.65	$7/2^+$	26.21	5/2+	
195.60 [‡] 6	195.65	$7/2^{+}$	0.0	$3/2^{+}$	
285.0	3971.4	$31/2^+$	3686.6	$29/2^+$	
336.0	640.6	$15/2^{-}$	304.6	$11/2^{-}$	
399.0	4772.9	$35/2^+$	4374.3	33/2+	
403.0	4374.3	$33/2^{+}$	3971.4	$31/2^{+}$	
421.0	3686.6	$29/2^{+}$	3265.9	$27/2^{+}$	
443.0	2677.7	$23/2^+$	2234.6	$19/2^{+}$	
466.0	3143.9	$25/2^+$	2677.7	$23/2^{+}$	
533.0	1173.6	$19/2^{-}$	640.6	$15/2^{-}$	
543.0	3686.6	$29/2^+$	3143.9	$25/2^+$	
588.0	3265.9	$27/2^+$	2677.7	$23/2^{+}$	
629.0	3265.9	$27/2^+$	2636.7	$27/2^{-}$	
671.0	1844.5	$23/2^{-}$	1173.6	$19/2^{-}$	$B(E2)\downarrow = 0.41 + 10 - 7$
688.0	4374.3	$33/2^+$	3686.6	$29/2^+$	
705.0	3971.4	$31/2^{+}$	3265.9	$27/2^{+}$	
792.0	2636.7	$27/2^{-}$	1844.5	$23/2^{-}$	$B(E2)\downarrow = 0.35 + 90 - 7$
801.0	4772.9	$35/2^+$	3971.4	$31/2^{+}$	
833.0	2677.7	$23/2^{+}$	1844.5	$23/2^{-}$	
834.0	5208.3	$37/2^{+}$	4374.3	$33/2^{+}$	
878.0	5650.9	$39/2^{+}$	4772.9	$35/2^+$	
900.0	3536.7	$31/2^{-}$	2636.7	$27/2^{-}$	$B(E2)\downarrow = 0.26 + 7 - 4$
929.0	6137.3	$41/2^{+}$	5208.3	$37/2^{+}$	
947.0	6597.9	$43/2^{+}$	5650.9	39/2+	
984.0	4520.7	$35/2^{-}$	3536.7	$31/2^{-}$	$B(E2)\downarrow = 0.190 + 34 - 20$
1009.0	7146.3	$(45/2^+)$	6137.3	$41/2^{+}$	
1016.0	7613.9	$(47/2^+)$	6597.9	$43/2^{+}$	
1053.0	5573.7	39/2-	4520.7	35/2-	$B(E2)\downarrow = 0.133 + 24 - 20$
1061.0	2234.6	$19/2^{+}$	1173.6	19/2-	
1067.0	7730.7	$(47/2^{-})$	6663.7	$43/2^{-}$	
1088.0	8701.9	$(51/2^+)$	7613.9	$(47/2^+)$	

Continued on next page (footnotes at end of table)

 E_{γ}^{\dagger}

1090.0 1102.0 1129.0 1171.0 1186.0

1260.0

1266.0

1300.0

		100	⁰ Mo(³⁶ S,p4n ₂	γ) 2000W	2000Wa28,2001Pa25 (contin		
	continued)						
E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
6663.7	43/2-	5573.7 39/2	- 1334.0	12028.3	$(61/2^+)$	10694.3	$(57/2^+)$
8248.3	$(49/2^+)$	7146.3 (45/2	2 ⁺) 1369.0	12507.9	$(63/2^+)$	11138.9	$(59/2^+)$
8859.7	$(51/2^{-})$	7730.7 (47/2	2 ⁻) 1429.0	13457.3	$(65/2^+)$	12028.3	$(61/2^+)$
9872.9	$(55/2^+)$	8701.9 (51/2	2 ⁺) 1472.0	13979.9	$(67/2^+)$	12507.9	$(63/2^+)$
9434.3	$(53/2^+)$	8248.3 (49/2	2 ⁺) 1542.0	14999.3	$(69/2^+)$	13457.3	$(65/2^+)$

1579.0

1689.0

15558.9

17247.9

 $(71/2^+)$

 $(75/2^+)$

13979.9 (67/2+)

15558.9 (71/2+)

 † From 2000Wa28 (Ey's of 2001Pa25 have the same values), except as noted. ‡ From 131 Ce ε decay (10.3 min).

9434.3 (53/2+)

9872.9 (55/2+)

1844.5 23/2-

10694.3

11138.9

3143.9

 $(57/2^+)$

 $(59/2^+)$ $25/2^+$

100 Mo(36 S,p4n γ) 2000Wa28,2001Pa25

Level Scheme

¹³¹₅₇La₇₄

¹⁰⁰Mo(³⁶S,p4nγ) 2000Wa28,2001Pa25

Level Scheme (continued)

¹³¹₅₇La₇₄

¹⁰⁰Mo(³⁶S,p4nγ) 2000Wa28,2001Pa25

¹³¹₅₇La₇₄