U(n,F) E=thermal 1993Ru01,2004Fo06

History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, I. Mitropolsky, A. Rodionov	NDS 107, 2715 (2006)	17-Jul-2006

1981En05: measured β 's, n's; Si, shielded BF₃, SOLIS.

1986Wa17, 1986ReZU: measured β 's, n's, β ⁻n coin, β (t), n(t); Si, shielded ³He, TRISTAN.

1980Lu04, 1976Lu02: measured β 's, n's; Si, shielded ³He, OSIRIS.

1984Fo19, 1984Fo03: measured β 's, $\beta\gamma$ coin, γ 's, γ (t), $\gamma\gamma$ (t), and $\gamma\gamma$ coin; HPGe, Ge(Li), plastic scin, OSIRIS.

1988Fo05: measured β 's and $\beta\gamma$ coin; HPGe, Ge(Li), OSIRIS.

1993Ru01: measured n's, β 's, β (t), n(t); shielded BF₃, scin., OSIRIS.

1995Me16, 1999Fo01: measured β^- decay energy, $\beta\gamma$ coin, Si(Li), HPGe, OSIRIS.

2004Fo06: ¹³¹In isotopes produced continuously by fission in the combined target and ion source of OSIRIS mass spectrometer. Measured E γ , I γ , $\gamma\gamma$, E β , I β , $\beta\gamma$ coin using two HPGe spectrometers of 80% and 30% relative efficiencies, and an HPGe diode used as β spectrometer.

¹³¹In Levels

E(level) [#]	J^{π}	T _{1/2} †	Comments
0.0	(9/2 ⁺) [‡]	0.28 s <i>3</i>	%β ⁻ =100; %β ⁻ n≤2.0 3 %β ⁻ n: unweighted average of 1.72 23 (1980Lu04), 1.55 7 (1986Wa17), and 2.64 13 (1993Ru01). Other: 5.5 19 (1981En05). Similarity in T _{1/2} 's does not allow decomposition of the decay curves. From the measured fission yield ratios of E(302):E(3764):g.s.=0.82/0.014/0.16 (1993Ru01) in ²³⁵ U(n,F) reaction, the evaluators estimate ≈0.3% for g.s., ≈1.6% for (1/2 ⁻) isomer and ≈0.03 for (21/2 ⁻) isomer. This branching between the g.s. and the first isomer is consistent with that in ¹²⁷ In and ¹²⁹ In.
			J^{π} : J^{π} =9/2 ⁺ is most probable from the depopulation ratios to ¹³¹ Sn levels. T _{1/2} : from 1984Fo19 (2434 γ (t),3990 γ (t)). Others: 0.276 s 3 (1986Wa17), 0.287 s 4 (1993Ru01). The more precise, but discrepant, values from 1986Wa17 and 1993Ru01 were not used since the experimental techniques would not distinguish between contributions from the three isomers.
302 32	(1/2 ⁻) [‡]	0.35 s 5	 %β⁻≥99.982; %β⁻n≤2.0 3; %IT≤0.018 %β⁻n: see comment for g.s. %IT: estimated by the evaluators assuming M4 γ to g.s., no states of intermediate J^π between g.s. and 302 state (syst of odd-A In), and RUL(M4)=30; J^π: J^π=1/2⁻ is most probable from the depopulation ratios to ¹³¹Sn levels (2004Fo06).
3764 88	(19/2 to 23/2) ⁽⁺⁾	0.32 s 6	$\begin{aligned} & T_{1/2}: \text{ from 1984Fo19 (332}\gamma(t)). \\ & & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & $

 † Similarity in $T_{1/2}{}^\prime s$ does not allow decomposition of the decay curves.

^{\ddagger} From the shell model and systematics of $g_{9/2}$ - $p_{1/2}$ In isomers.

[#] From differences in Q(β^{-}) (2004Fo06).