¹³¹Ba ε decay 2003Sa62,1990Su07

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, I. Mitropolsky, A. Rodionov	NDS 107, 2715 (2006)	17-Jul-2006

Parent: ¹³¹Ba: E=0.0; $J^{\pi}=1/2^+$; $T_{1/2}=11.50$ d 6; $Q(\varepsilon)=1376$ 5; $\%\varepsilon+\%\beta^+$ decay=100.0

1976Ge14:¹³¹Ba ε decay [from Pr(p,X) E=600-800 MeV, chemical extraction, separator; energy correction by 1982KhZW]; measured γ , $\gamma\gamma$ coin deduced ¹³¹Cs levels. Ge(Li) detectors.

1964Ho17: ¹³¹Ba ε decay; measured ce, xce-delay deduced ¹³¹Cs levels, Ece, Ice, δ , T_{1/2}. Iron-free beta-ray spectrometer, plastic scintillations.

1969Fe02: ¹³¹Ba ε decay; measured $\gamma\gamma(\theta)$, $\gamma\gamma(90^{\circ}, \text{pol})$, $\gamma\gamma(\theta, \text{t})$, $\gamma\gamma(\theta, \text{H})$, $\text{ce}\gamma(\theta)$, xce-delay deduced ¹³¹Cs levels, J^{π} , $T_{1/2}$, δ , g-factor. Ge(Li), Si(Li), NaI(Tl) detectors.

1980Kr17: ¹³¹Ba ε decay; measured $\gamma\gamma(\theta)$ deduced ¹³¹Cs levels, J^{π} , δ . Ge(Li) detectors.

1980VyZZ: ¹³¹Ba ε decay; measured γ , ce deduced ¹³¹Cs E γ , I γ , Ice, α (exp).

1990Su07: ¹³¹Ba ε decay; measured γ , $\gamma\gamma$ coin deduced ¹³¹Cs levels, $E\gamma$, $I\gamma$.

1995Ku32: ¹³¹Ba ε decay; measured γ , $x\gamma$ coin deduced ¹³¹Cs $E\gamma$, $I\gamma$, K capture probabilities.

2003Sa62: ¹³¹Ba ε decay; measured γ , ce deduced ¹³¹Cs levels, J^{π} , $E\gamma$, $I\gamma$, Ice, $\alpha(exp)$. HPGe detector, mini-orange electron spectrometer.

Others: 1963Ke11, 1965Hi06, 1967Se03, 1969Kh09, 1970Ha45, 1970Ma21, 1972St20, 1972Dr02, 1975Mo12, 1977Sa20, 1978Vo11, 1978Va04, 1979Sh10, 1988Sa14, 1988Si02, 1999De49, 2000De13.

¹³¹Cs Levels

The decay scheme is based on the coincidence relations and Ritz combination principle. $T_{1/2}$ (excited states) measured by $\gamma\gamma(t)$, $ce\gamma(t)$, xce(t).

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	5/2+	9.689 d 16	$T_{1/2}$: from Adopted Levels, $\gamma(t)$ measurements.
78.738 5	7/2+	9.4 ns 2	$T_{1/2}$: weighted average of 9.6 ns 3 (1964Ho17), 9.15 ns 30 (1969Fe02).
123.802 3	1/2+	3.75 ns 5	$T_{1/2}$: weighted average of 3.77 ns 5 (1960Bo24), 3.7 ns 1 (1964Ho17), 3.8 ns 1 (1963Va35), 3.48 ns 7 (1969Fe02), 3.79 ns 8 (1969Kh09), 3.80 ns 1 (1972Gu03). Others: 4.15 ns 8 (1961Na06), 3.5 ns 3 (1963Ke11).
133.623 4	5/2+	8.6 ns <i>3</i>	g=+0.79 5 (1969Fe02); g=+0.74 3 (1972AoZZ); Q=0.022 2 (2000De13) T _{1/2} : weighted average of 9.3 ns 3 (1964Ho17), 9.13 ns 20 (1969Kh09), 9.75 ns 30 (1969Fe02), 8.1 ns 1 (1972Gu03), 9.06 ns 16 (2000De13). Others: 13.5 ns 5 (1960Bo24), 12.7 ns 10 (1963Ke11). Q: from PAC measurements.
216.080 5	3/2+	≤0.2 ns	T _{1/2} : from 1969Fe02, 1969Kh09.
373.246 5	3/2+	≤0.25 ns	T _{1/2} : from 1969Kh09.
496.08 [#] 6	9/2+		
585.039 8	3/2+		
596.37 5	5/2+		
620.120 5	$1/2^{+}$	<0.15 ns	$T_{1/2}$: from $\gamma\gamma(t)$ (1963Va35).
657.61 4	7/2+		
696.471 8	3/2+		
764.12 [#] 14	$(3/2^+, 5/2^+)$		
775.25 <mark>#</mark> 6	$(11/2^{-})$		
919.59 4	$(3/2^+, 5/2^+)$		
1043.97 [#] 6	7/2+		
1047.670 7	$3/2^+$		
1170.637 24	3/2+		
1257 83 [#] 7	7/2+		
1341.99 4	1/2.3/2		
	1 2-1-		

131 Ba ε decay 2003Sa62,1990Su07 (continued)

¹³¹Cs Levels (continued)

 † From least-squares fit to Ey's.

[‡] From multipolarities and $\gamma(\theta)$ measurements. [#] The level is introduced by 2003Sa62 because of γ energy relations and available data on reactions.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(34 5)	1341.99	0.0117 8	6.66 17	0.0117 8	εL=0.730 25; εM+=0.270 20
(118 5)	1257.83	0.0107 11	8.49 7	0.0107 11	εK=0.757 7; εL=0.187 5; εM+=0.0557 17
(205 5)	1170.637	0.190 13	7.84 4	0.190 13	εK=0.8087 15; εL=0.1486 11; εM+=0.0427 4
(328 5)	1047.670	1.47 2	7.414 <i>16</i>	1.47 2	εK=0.8288 5; εL=0.1335 4; εM+=0.03774 12
(332 5)	1043.97	0.017 4	9.36 11	0.017 4	εK=0.8291 5; εL=0.1332 4; εM+=0.03766 12
(456 5)	919.59	0.013 2	9.78 7	0.013 2	εK=0.8371 3; εL=0.12721 18; εM+=0.03569 6
(601 5)	775.25	0.022 10	9.80 20	0.022 10	εK=0.8419 2; εL=0.1236 1; εM+=0.03451 3
(680 5)	696.471	0.567 11	8.505 11	0.567 11	εK=0.8436 1; εL=0.12230 8; εM+=0.03409 3
(718 5)	657.61	0.047 23	9.64 22	0.047 23	εK=0.84430 9; εL=0.12177 7; εM+=0.03392 2
(756 5)	620.120	52.7 5	6.633 8	52.7 5	εK=0.8449; εL=0.12132 6; εM+=0.03377 2
(791 5)	585.039	1.24 2	8.156 19	1.24 2	εK=0.8454; εL=0.12094 6; εM+=0.03365 2
(1003 5)	373.246	20.2 3	7.305 9	20.2 3	εK=0.8477; εL=0.11922 4; εM+=0.03309 1
(1160 5)	216.080	21.7 5	7.404 11	21.7 5	εK=0.8488; εL=0.11837 3; εM+=0.032815 8
(1252 5)	123.802	1.7 6	8.58 16	1.7 6	εK=0.8491; εL=0.11794 3; εM+=0.032678 8

[†] From net γ feeding of each level. [‡] Absolute intensity per 100 decays.

 $\gamma(^{131}Cs)$

I γ normalization: from $\Sigma I(\gamma + ce) = 100$ to g.s.

ω

 α (K)exp: from 1978Vo11 and 1980VyZZ besides as noted. The values of α (exp) are normalized by evaluators (using BrIcc program) to $\alpha_{\rm K}$ =0.619, for 123.8 keV, E2 transition between the levels with J^{π} =1/2⁺ and J^{π} =5/2⁺.

See 1978Vo11, 1975Mo12, 1970Ha45, 1999De49 for penetration parameters.

$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{@b}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	δ^{a}	α^{c}	Comments
54.887 5	0.221 5	133.623	5/2+	78.738	7/2+	E2(+M1)	≥4	16.2 4	K:L1:L2:L3=34.0 7:3.14 16:19.8 4:26.3 5 (1975Mo12) α (K)=6.07 10; α (L)=8.0 3; α (M)=1.75 6; α (N+)=0.391 13 α (N)=0.351 11; α (O)=0.0398 13; α (P)=0.0001625 23 δ : from 1975Mo12.
72.43 <i>10</i> 78.736 <i>6</i>	0.020 [‡] 3 1.58 3	657.61 78.738	7/2 ⁺ 7/2 ⁺	585.039 0.0	3/2 ⁺ 5/2 ⁺	[E2] M1+E2	0.060 11	5.94 <i>9</i> 1.80	Mult.: transition between levels with $J^{\pi}=7/2^+$ and $J^{\pi}=3/2^+$. K:L1:L2:L3=67.8 14:7.54 19:0.71 6:0.24 5 (1975Mo12) α (K)=1.533 22; α (L)=0.209 4; α (M)=0.0429 8; α (N+)=0.01037 18 α (N)=0.00906 16: α (Q)=0.001253 20: α (P)=6.02×10 ⁻⁵ 9
82.442 15	0.040 4	216.080	3/2+	133.623	5/2+	M1,E2		2.6 11	
89.04 <i>13</i>	0.008 [‡] 1	585.039	3/2+	496.08	9/2+	[M3]		130.0 21	α (K)=77.6 <i>12</i> ; α (L)=40.7 7; α (M)=9.40 <i>16</i> ; α (N+)=2.23 4 α (N)=1.97 4; α (O)=0.249 4; α (P)=0.00743 <i>12</i> Mult.: assumed by evaluators from decay pattern.
92.288 9	1.25 2	216.080	3/2+	123.802	1/2+	M1+E2	0.19 5	1.18 4	$\alpha(K)=0.990 \ 18; \ \alpha(L)=0.151 \ 13; \ \alpha(M)=0.031 \ 3; \ \alpha(N+)=0.0075 \ 6 \ \alpha(N)=0.0065 \ 6; \ \alpha(O)=0.00088 \ 6; \ \alpha(P)=3.83\times10^{-5} \ 6$
117.69 <i>13</i>	0.045 [‡] 16	775.25	(11/2 ⁻)	657.61	7/2+				E_{γ} : questionable placement on the base of energy relations only; γ from $J^{\pi}=11/2^{-}$ to $J^{\pi}=7/2^{+}$ have to be of mult.=M2 that is unlikely.
123.804 <i>3</i>	62.0 5	123.802	1/2+	0.0	5/2+	E2		0.878	K:L1:L2:L3=1000:94.9 17:116 2:126 2 (1975Mo12); α (K)exp=0.63 8 (1995Ku32) α (K)=0.619 9; α (L)=0.205 3; α (M)=0.0440 7; α (N+)=0.01006 14 α (N)=0.00896 13; α (O)=0.001074 15; α (P)=1.79×10 ⁻⁵ 3

	¹³¹ Ba ε decay 2003Sa62,1990Su07 (continued)								
	γ ⁽¹³¹ Cs) (continued)								
$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\textcircled{0}{b}}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.&	δ^{a}	α ^C	Comments
128.09 <i>14</i> 133.617 <i>5</i>	0.030 <i>2</i> 4.54 <i>5</i>	1047.670 133.623	3/2 ⁺ 5/2 ⁺	919.59 0.0	(3/2 ⁺ ,5/2 ⁺) 5/2 ⁺	M1+E2	+0.51 2	0.454 8	α (K)exp=0.345 8; α (K)exp=0.47 6 (1995Ku32); δ =0.52 3 (1969Fe02) K:L1:L2:L3=44.3 9:5.24 11:1.62 5:1.42 5 (1975Mo12) α (K)=0.370 6; α (L)=0.0664 17; α (M)=0.0139 4; α (N+)=0.00328 8
137.323 22	0.080 3	216.080	3/2+	78.738	7/2+	E2		0.610	$\begin{array}{l} \alpha(N)=0.00289 \ 7; \ \alpha(O)=0.0003779; \ \alpha(P)=1.356\times10^{-5}19 \\ Possible \ B(E0)/B(E2)=0.015 \ 5 \ (1978Vo11). \\ \alpha(K)exp=0.42 \ 7 \\ \alpha(K)=0.443 \ 7; \ \alpha(L)=0.1320 \ 19; \ \alpha(M)=0.0283 \ 4; \\ \alpha(N+)=0.00648 \ 9 \end{array}$
157.160 <i>10</i>	0.372 15	373.246	3/2+	216.080	3/2+	M1,E2		0.32 7	$\alpha(N)=0.00577 \ 8; \ \alpha(O)=0.000698 \ 10; \ \alpha(P)=1.311\times10^{-5} \ 19$ $\alpha(L1)\exp=0.036 \ 4$ $\alpha(K)=0.25 \ 4; \ \alpha(L)=0.052 \ 24; \ \alpha(M)=0.011 \ 5;$ $\alpha(N+)=0.0026 \ 12$ $\alpha(N+)=0.0026 \ 12$
216.088 14	42.4 8	216.080	3/2+	0.0	5/2+	M1+E2	+0.07 3	0.1062	$\begin{array}{l} \alpha(\mathrm{N})=0.0023 \ 11; \ \alpha(\mathrm{O})=0.00029 \ 12; \ \alpha(\mathrm{P})=8.61\times10^{-6} \ 15\\ \alpha(\mathrm{L})=0.0272 \ 8\\ \alpha(\mathrm{K})\exp=0.087 \ 4; \ \mathrm{K}:\mathrm{L1}:\mathrm{L2}:\mathrm{L3}=99.0 \ 15:12.2 \ 4:0.72 \ 15:0.11\\ \ 6 \ (1975\mathrm{Mo12})\\ \alpha(\mathrm{K})=0.0912 \ 13; \ \alpha(\mathrm{L})=0.01198 \ 18; \ \alpha(\mathrm{M})=0.00245 \ 4; \end{array}$
239.621 5	5.20 11	373.246	3/2+	133.623	5/2+	M1+E2	-0.25 10	0.0810 <i>13</i>	$\alpha(N+)=0.000594 9$ $\alpha(N)=0.000518 8; \alpha(O)=7.22\times10^{-5} 11; \alpha(P)=3.57\times10^{-6} 5$ $\alpha(K)\exp=0.0688 15; K:L1:L2:L3=9.3 14:1.12 17:0.09$ 2:0.04 1 (1964H017) $\alpha(K)=0.0693 10; \alpha(L)=0.0093 3; \alpha(M)=0.00191 7;$
246.858 <i>13</i>	1.35 <i>1</i>	620.120	1/2+	373.246	3/2+	M1,E2		0.078 4	$\alpha(N+)=0.000462 IS$ $\alpha(N)=0.000404 I3; \ \alpha(O)=5.59\times10^{-5} I5; \ \alpha(P)=2.68\times10^{-6} 4$ $\alpha(K)\exp=0.0646 22$ $\alpha(K)=0.0649 I4; \ \alpha(L)=0.0106 23; \ \alpha(M)=0.0022 5;$ $\alpha(N+)=0.00052 II$
249.435 11	6.17 <i>21</i>	373.246	3/2+	123.802	1/2+	M1+E2	+0.63 6	0.0743	$\begin{aligned} &\alpha(N) = 0.00046 \ 10; \ \alpha(O) = 6.1 \times 10^{-5} \ 11; \ \alpha(P) = 2.34 \times 10^{-6} \ 17 \\ &\alpha(K) \exp = 0.0345 \ 13; \ K:L1:L2:L3 = 9.5 \ 14:1.13 \ 17:0.12 \\ &2:0.04 \ 1 \ (1964Ho17) \\ &\alpha(K) = 0.0626 \ 9; \ \alpha(L) = 0.00929 \ 21; \ \alpha(M) = 0.00192 \ 5; \\ &\alpha(N+) = 0.000459 \ 11 \end{aligned}$
268.71 2	0.019 [‡] 5	1043.97	7/2+	775.25	(11/2 ⁻)	M2		0.277	$\begin{aligned} &\alpha(N) = 0.000402 \ 9; \ \alpha(O) = 5.43 \times 10^{-5} \ 11; \ \alpha(P) = 2.34 \times 10^{-6} \ 4 \\ &\alpha(K) \exp[=0.22 \ 7 \ (2003Sa62) \\ &\alpha(K) = 0.231 \ 4; \ \alpha(L) = 0.0365 \ 6; \ \alpha(M) = 0.00763 \ 11; \\ &\alpha(N+) = 0.00185 \ 3 \\ &\alpha(N) = 0.001613 \ 23; \ \alpha(O) = 0.000222 \ 4; \ \alpha(P) = 1.038 \times 10^{-5} \ 15 \end{aligned}$

4

From ENSDF

 $^{131}_{55}\mathrm{Cs}_{76}\text{-}4$

				¹³¹ I	Ba ε decay	2003Sa62,	1990Su07	(continued)	
					<u> </u>	131 Cs) (cor	tinued)		
$E_{\gamma}^{\dagger\ddagger}$	Ι _γ @b	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	δ ^a	α ^C	Comments
279.17 2 294.503 <i>12</i>	0.025 [‡] <i>12</i> 0.361 <i>10</i>	775.25 373.246	(11/2 ⁻) 3/2 ⁺	496.08 78.738	9/2 ⁺ 7/2 ⁺	E2		0.0461	$\begin{aligned} &\alpha(\text{K}) \exp = 0.045 \ 3 \\ &\alpha(\text{K}) = 0.0377 \ 6; \ \alpha(\text{L}) = 0.00670 \ 10; \ \alpha(\text{M}) = 0.001400 \\ &20; \ \alpha(\text{N}+) = 0.000329 \ 5 \\ &\alpha(\text{N}) = 0.000290 \ 4; \ \alpha(\text{O}) = 3.76 \times 10^{-5} \ 6; \\ &\alpha(\text{P}) = 1.278 \times 10^{-6} \ 18 \end{aligned}$
297.83 <i>15</i> 323.200 <i>24</i> 351.202 <i>16</i>	0.008 [‡] 1 0.0133 10 0.199 12	1341.99 696.471 1047.670	1/2,3/2 3/2+ 3/2+	1043.97 373.246 696.471	7/2 ⁺ 3/2 ⁺ 3/2 ⁺	M1,E2		0.0280 <i>16</i>	E _γ ,I _γ : from 1995Ku32. α (K)exp=0.024 3 α (K)=0.0237 18; α (L)=0.00345 18; α (M)=0.00071 5; α (N+)=0.000170 9 α (N)=0.000149 8; α (O)=2.02×10 ⁻⁵ 5; α (P)=8.7×10 ⁻⁷ 12
368.964 28 373.256 <i>12</i>	0.035 7 30.0 <i>3</i>	585.039 373.246	3/2+ 3/2+	216.080 0.0	3/2+ 5/2+	M1+E2	-0.9 3	0.0238 7	$\alpha(K) \exp = 0.0198 \ 8; \ K:L1:L2 = 14.8 \ 22:1.9 \ 3:0.25 \ 4 \\ (1964Ho17) \\ \alpha(K) = 0.0202 \ 7; \ \alpha(L) = 0.00287 \ 5; \ \alpha(M) = 0.000591 \\ 12; \ \alpha(N+) = 0.0001418 \ 24 \\ \alpha(N) = 0.0001241 \ 22; \ \alpha(O) = 1.689 \times 10^{-5} \ 24; \\ \alpha(P) = 7.5 \times 10^{-7} \ 4$
390.06 <i>4</i> 404.039 7	0.0041 <i>4</i> 2.80 2	1047.670 620.120	3/2+ 1/2+	657.61 216.080	7/2 ⁺ 3/2 ⁺	M1+E2	+0.8 3	0.0194 7	$\alpha(K)\exp=0.0155 \ 18$ $\alpha(K)=0.0165 \ 7; \ \alpha(L)=0.00228 \ 4; \ \alpha(M)=0.000469 \ 7;$ $\alpha(N+)=0.0001128 \ 16$ $\alpha(N)=9.86\times10^{-5} \ 14; \ \alpha(O)=1.351\times10^{-5} \ 24;$ $\alpha(P)=6.2\times10^{-7} \ 4$
406.11 <i>21</i>	0.044 [‡] 20	1170.637	3/2+	764.12	(3/2 ⁺ ,5/2 ⁺)	M1+E2		0.0187 <i>17</i>	$\alpha(K)\exp=0.017 \ 14 \ (2003Sa62)$ $\alpha(K)=0.0159 \ 17; \ \alpha(L)=0.00225 \ 4; \ \alpha(M)=0.000463$ $7; \ \alpha(N+)=0.0001110 \ 18$ $\alpha(N)=9.72\times10^{-5} \ 14; \ \alpha(O)=1.32\times10^{-5} \ 5;$ $\alpha(P)=5.9\times10^{-7} \ 9$
417.3 3	0.006 [‡] 3	496.08	9/2+	78.738	7/2+	M1+E2		0.0174 <i>17</i>	$\alpha(K)\exp=0.015 \ 10 \ (2003Sa62)$ $\alpha(K)=0.0148 \ 17; \ \alpha(L)=0.00208 \ 4; \ \alpha(M)=0.000428$ $7; \ \alpha(N+)=0.0001026 \ 22$ $\alpha(N)=8.98\times10^{-5} \ 17; \ \alpha(O)=1.23\times10^{-5} \ 5;$ $\alpha(P)=5.5\times10^{-7} \ 9$
423.69 25 427.564 <i>13</i>	0.0042 [‡] 5 0.204 2	919.59 1047.670	(3/2 ⁺ ,5/2 ⁺) 3/2 ⁺	496.08 620.120	9/2 ⁺ 1/2 ⁺	M1,E2		0.0163 <i>17</i>	$\begin{aligned} &\alpha(\mathbf{K}) \exp = 0.0153 \ 16 \\ &\alpha(\mathbf{K}) = 0.0139 \ 16; \ \alpha(\mathbf{L}) = 0.00194 \ 5; \ \alpha(\mathbf{M}) = 0.000399 \\ &\beta; \ \alpha(\mathbf{N}+) = 9.6 \times 10^{-5} \ 3 \\ &\alpha(\mathbf{N}) = 8.38 \times 10^{-5} \ 20; \ \alpha(\mathbf{O}) = 1.14 \times 10^{-5} \ 6; \\ &\alpha(\mathbf{P}) = 5.2 \times 10^{-7} \ 9 \end{aligned}$

S

 $^{131}_{55}$ Cs₇₆-5

L

					¹³¹ E	Ba ε decay	2003Sa6	52,1990Su07	(continued)
							$\gamma(^{131}Cs)$ (c	continued)	
$E_{\gamma}^{\dagger\ddagger}$	I_{γ} ^{@b}	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. <mark>&</mark>	δ^{a}	α^{C}	Comments
451.415 16	0.087 2	585.039	3/2+	133.623	5/2+	M1,E2		0.0141 16	$\alpha(K) \exp = 0.016 \ 3$ $\alpha(K) = 0.0120 \ 15; \ \alpha(L) = 0.00166 \ 7; \ \alpha(M) = 0.000341 \ 11;$ $\alpha(N+) = 8.2 \times 10^{-5} \ 4$ $\alpha(N+) = 8.2 \times 10^{-5} \ 4$ $\alpha(N+) = 8.2 \times 10^{-5} \ 4$
458.96 10	0.012 [‡] 1	1043.97	7/2+	585.039	3/2+	E2		0.01197	$\begin{aligned} \alpha(N) &= 7.2 \times 10^{-5} \ 3; \ \alpha(O) &= 9.8 \times 10^{-6} \ 6; \ \alpha(P) &= 4.5 \times 10^{-7} \ 8 \\ \alpha(K) &= 0.0105 \ 5; \ \alpha(N) &= 0.000315 \ 5; \\ \alpha(N+) &= 7.49 \times 10^{-5} \ 11 \end{aligned}$
461.250 <i>16</i>	0.12 2	585.039	3/2+	123.802	1/2+	M1,E2		0.0133 16	$\begin{aligned} \alpha(N) &= 6.58 \times 10^{-5} \ 10; \ \alpha(O) &= 8.80 \times 10^{-6} \ 13; \ \alpha(P) &= 3.59 \times 10^{-7} \ 5 \\ \alpha(K) &= 0.0113 \ 2 \\ \alpha(K) &= 0.0113 \ 15; \ \alpha(L) &= 0.00157 \ 7; \ \alpha(M) &= 0.000321 \ 13; \\ \alpha(N+) &= 7.7 \times 10^{-5} \ 4 \end{aligned}$
462.68 5	0.10 2	1047.670	3/2+	585.039	3/2+	M1,E2		0.0132 15	$\alpha(N) = 6.8 \times 10^{-5} 3; \ \alpha(O) = 9.3 \times 10^{-6} 6; \ \alpha(P) = 4.2 \times 10^{-7} 7$ $\alpha(K) = 0.013 2$ $\alpha(K) = 0.0112 15; \ \alpha(L) = 0.00155 7; \ \alpha(M) = 0.000319 13;$ $\alpha(N+) = 7.7 \times 10^{-5} 4$ $\alpha(N) = 6.7 \times 10^{-5} 3; \ \alpha(Q) = 9.2 \times 10^{-6} 6; \ \alpha(P) = 4.2 \times 10^{-7} 7$
474.2 [#] 2 480.399 <i>11</i>	0.0050 <i>13</i> 0.704 <i>9</i>	1170.637 696.471	3/2 ⁺ 3/2 ⁺	696.471 216.080	3/2 ⁺ 3/2 ⁺	M1+E2	+0.21 3	0.01326	$\alpha(K) = 0.17410 - 3, \ \alpha(O) = 9.27410 - 0, \ \alpha(T) = 4.27410 - 7$ $\alpha(K) = 0.0096 \ 12$ $\alpha(K) = 0.01142 \ 17; \ \alpha(L) = 0.001466 \ 21; \ \alpha(M) = 0.000299 \ 5;$ $\alpha(N+) = 7.25 \times 10^{-5} \ 11$
486.507 12	4.47 3	620.120	1/2+	133.623	5/2+	E2		0.01016	$\alpha(N)=6.33 \times 10^{-5} 9; \alpha(O)=8.83 \times 10^{-6} 13; \alpha(P)=4.40 \times 10^{-7} 7$ $\alpha(K)=0.0094 7$ $\alpha(K)=0.00856 12; \alpha(L)=0.001274 18; \alpha(M)=0.000263 4;$ $\alpha(N+)=6.27 \times 10^{-5} 9$
496.321 5	100	620.120	1/2+	123.802	1/2+	M1		0.01234	$\begin{aligned} \alpha(N) &= 5.50 \times 10^{-5} \ 8; \ \alpha(O) &= 7.38 \times 10^{-6} \ 11; \ \alpha(P) &= 3.07 \times 10^{-7} \ 5 \\ A_2 &= -0.52 \ 2, \ A_4 &= -0.62 \ 9, \gamma(\text{lin pol}) \ P_1(90^\circ) &= +0.47 \ 11 \ (1969\text{Fe02}). \\ \alpha(K) &= x = 0.0100 \ 8 \ (2003\text{Sa62}) \\ \alpha(K) &= 0.01064 \ 15; \ \alpha(L) &= 0.001356 \ 19; \ \alpha(M) &= 0.000277 \ 4; \\ \alpha(N+) &= 6.71 \times 10^{-5} \ 10 \\ \alpha(N) &= 5.85 \times 10^{-5} \ 9; \ \alpha(O) &= 8.18 \times 10^{-6} \ 12; \ \alpha(P) &= 4.11 \times 10^{-7} \ 6 \\ E_{\gamma} &: \text{ weighted average of } 496.321 \ 12 \ (1980 \text{VyZZ}), \ 496.326 \ 13, \\ (1982 \text{KhZW}), \ 496.30 \ 1 \ (1990 \text{Su07}), \ 496.326 \ 5 \ (2003 \text{Sa62}). \\ \text{Other: } 496.280 \ 16 \ (1995 \text{Ku32}). \\ A_2 &= -0.001 \ 2, \ A_4 &= +0.001 \ 3, \ \gamma(\text{lin pol}) \ P_1(90^\circ) &= +0.012 \ 16 \\ (1960 \text{Fe}_{0}2) \end{aligned}$
506.1 <i>4</i> 517.64 <i>7</i> 533.68 [#] <i>17</i>	0.004 <i>1</i> 0.005 <i>2</i> 0.0030 <i>7</i>	585.039 596.37 657.61	3/2+ 5/2+ 7/2+	78.738 78.738 123.802	7/2 ⁺ 7/2 ⁺ 1/2 ⁺	М3		0.0895	(1969Fe02). I_{γ} : average of 0.003 <i>1</i> (1990Su07) and 0.007 <i>2</i> (2003Sa62). $\alpha(K)$ exp=0.06 <i>2</i> (2003Sa62) $\alpha(K)$ =0.0743 <i>11</i> ; $\alpha(L)$ =0.01206 <i>17</i> ; $\alpha(M)$ =0.00253 <i>4</i> ; $\alpha(N+)$ =0.000611 <i>9</i> $\alpha(N)$ =0.000535 <i>8</i> ; $\alpha(O)$ =7.32×10 ⁻⁵ <i>11</i> ; $\alpha(P)$ =3.35×10 ⁻⁶ <i>5</i>

6

 $^{131}_{55}\mathrm{Cs}_{76}$ -6

L

¹³¹Ba ε decay 2003Sa62,1990Su07 (continued)

$\gamma(^{131}Cs)$ (continued)

$E_{\gamma}^{\dagger\ddagger}$	Ι _γ @ <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^{&}	α^{c}	Comments
546.30 8 550.46 <i>14</i> 562.824 <i>23</i> 572.697 <i>25</i>	0.0075 7 0.0046 11 0.0079 15 0.336 6	919.59 1170.637 696.471 696.471	$(3/2^+, 5/2^+)$ $3/2^+$ $3/2^+$ $3/2^+$	373.246 620.120 133.623 123.802	3/2 ⁺ 1/2 ⁺ 5/2 ⁺ 1/2 ⁺	M1,E2	0.0076 11	α (K)exp=0.0058 9 α (K)=0.0065 10; α (L)=0.00087 8; α (M)=0.000178 16; α (N+)=4.3×10 ⁻⁵ 4
585.031 11	2.55 2	585.039	3/2+	0.0	5/2+	M1,E2	0.0072 11	$\alpha(N)=3.8\times10^{-5} 4; \ \alpha(O)=5.2\times10^{-6} 6; \ \alpha(P)=2.4\times10^{-7} 5 \\ \alpha(K)=0.0064 7 \\ \alpha(K)=0.0062 \ 10; \ \alpha(L)=0.00082 \ 8; \ \alpha(M)=0.000168 \ 16; \\ \alpha(N+)=4.1\times10^{-5} 4 \\ \alpha(D)=2.5\times10^{-5} 4 \\ \alpha(D)=2.5\times10^{-5} 4 \\ \alpha(D)=2.5\times10^{-7} 5 \\ \alpha(D)=2.5$
596 48 13	0.0037.4	596 37	$5/2^{+}$	0.0	5/2+			$\alpha(\mathbf{N}) = 3.3 \times 10^{-5} 4$; $\alpha(\mathbf{O}) = 4.9 \times 10^{-5} 0$; $\alpha(\mathbf{P}) = 2.3 \times 10^{-5} 3$
599.94 11	$0.0034^{\ddagger} 4$	1257.83	7/2 ⁺	657.61	7/2+			
620.094 ^{<i>d</i>} 7	3.07 2	620.120	1/2+	0.0	5/2+	E2	0.00530	$ \begin{aligned} &\alpha(\text{K}) \text{exp} = 0.0041 \ 5 \\ &\alpha(\text{K}) = 0.00450 \ 7; \ \alpha(\text{L}) = 0.000632 \ 9; \ \alpha(\text{M}) = 0.0001299 \ 19; \\ &\alpha(\text{N}+) = 3.11 \times 10^{-5} \ 5 \\ &\alpha(\text{N}) = 2.73 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 3.71 \times 10^{-6} \ 6; \ \alpha(\text{P}) = 1.642 \times 10^{-7} \ 23 \end{aligned} $
								E_{γ} : poor fit, the level energy difference is equal to 620.119 5.
630.23 17	0.0078‡ 9	764.12	$(3/2^+, 5/2^+)$	133.623	5/2+			
657.64# 10	0.0074 6	657.61	7/2+	0.0	5/2+	[E2]	0.00456	$\alpha(\mathbf{K})=0.00389\ 6;\ \alpha(\mathbf{L})=0.000539\ 8;\ \alpha(\mathbf{M})=0.0001106\ 16;\\ \alpha(\mathbf{N}+)=2.65\times10^{-5}\ 4$
((1 (0 0	0.014 2	1057.00	7/2+	506 27	5 /0+	52	0.00454	$\alpha(N) = 2.32 \times 10^{-5} 4; \ \alpha(O) = 3.17 \times 10^{-6} 5; \ \alpha(P) = 1.421 \times 10^{-7} 20$
661.60 8	0.014 2	1257.83	1/21	596.37	5/21	E2	0.00454	$\alpha(K)\exp=0.0041 \ 12 \ (20038a62)$ $\alpha=0.00454: \ \alpha(K)=0.00384 \ 12: \ \alpha(L)=0.00053 \ 2$
674.418 <i>16</i>	0.283 2	1047.670	3/2+	373.246	3/2+	M1,E2	0.0051 8	$\alpha(K) = 0.0040 \ 9$ $\alpha(K) = 0.0043 \ 7; \ \alpha(L) = 0.00057 \ 7; \ \alpha(M) = 0.000116 \ 14;$ $\alpha(N+) = 2.8 \times 10^{-5} \ 4$
								$\alpha(N)=2.5\times10^{-5}$ 3; $\alpha(O)=3.4\times10^{-6}$ 5; $\alpha(P)=1.6\times10^{-7}$ 3
696.467 <i>14</i>	0.317 9	696.471	3/2+	0.0	5/2+	M1,E2	0.0047 8	α (K)exp=0.0043 <i>10</i> α (K)=0.0040 <i>7</i> ; α (L)=0.00053 <i>7</i> ; α (M)=0.000107 <i>13</i> ; α (N+)=2.6×10 ⁻⁵ <i>4</i>
								$\alpha(N)=2.3\times10^{-5}$ 3; $\alpha(O)=3.1\times10^{-6}$ 5; $\alpha(P)=1.5\times10^{-7}$ 3
703.47 7	0.015 1	919.59 1341 00	$(3/2^+, 5/2^+)$	216.080	$3/2^+$			
757.0 2	0.0010 3	1341.99	1/2,3/2 1/2,3/2	585.039	$3/2^+$			E _w .L _w : from 1990Su07.
785.92 9	0.0050 15	919.59	$(3/2^+, 5/2^+)$	133.623	$5/2^+$			E_{γ}, I_{γ} : from 1990Su07.
795.85 8	0.0015 2	919.59	$(3/2^+, 5/2^+)$	123.802	$1/2^+$		0.0024.6	(11) 0.0020 5
191.38 6	0.075 3	11/0.637	3/2	3/3.246	3/21	M1,E2	0.0034 6	$\alpha(\mathbf{K}) = 0.00058 \text{ S}$ $\alpha(\mathbf{K}) = 0.0020 \text{ S}; \alpha(\mathbf{L}) = 0.00038 \text{ S}; \alpha(\mathbf{M}) = 7.7 \times 10^{-5} 10$
								$\alpha(N) = 0.0029 \ 3, \ \alpha(L) = 0.00036 \ 3, \ \alpha(N) = 7.7 \times 10^{-5} \ 10;$ $\alpha(N+) = 1.86 \times 10^{-5} \ 25$
								$\alpha(N)=1.62\times10^{-5}\ 22;\ \alpha(O)=2.3\times10^{-6}\ 4;\ \alpha(P)=1.10\times10^{-7}\ 20$

-

				131 Ba ε de	cay 2003	3Sa62,1990Su07 (continued)			
	$\gamma(^{131}Cs)$ (continued)									
$E_{\gamma}^{\dagger \ddagger}$	Ι _γ @b	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^{&}	δ^{a}	α ^{<i>c</i>}	Comments		
827.79 <i>12</i> 831.583 <i>14</i>	$\begin{array}{c} 0.0077^{\ddagger} \ 8 \\ 0.488 \ 4 \end{array}$	1043.97 1047.670	7/2+ 3/2+	216.080 3/2 ⁺ 216.080 3/2 ⁺	M1+E2	-0.31 +21-46	0.0035 3	$\alpha(K)\exp=0.0031 \ 4$ $\alpha(K)=0.00299 \ 25; \ \alpha(L)=0.00038 \ 3; \ \alpha(M)=7.7\times10^{-5} \ 6; \ \alpha(N+)=1.86\times10^{-5} \ 13 \ \alpha(N)=1.62\times10^{-5} \ 12; \ \alpha(O)=2.27\times10^{-6} \ 17; \ \alpha(P)=1.14\times10^{-7} \ 11 \ 10^{-7} \ 10^{-6} \ 10^{-7} \$		
840.9 <i>4</i> 884.58 <i>20</i> 914.035 <i>25</i>	0.004 2 0.0048 [‡] 5 0.099 <i>I</i>	919.59 1257.83 1047.670	(3/2 ⁺ ,5/2 ⁺) 7/2 ⁺ 3/2 ⁺	78.738 7/2 ⁺ 373.246 3/2 ⁺ 133.623 5/2 ⁺	M1,E2		0.0025 4	$\alpha(P)=1.14\times10^{-7} II$ $\alpha(K)\exp=0.0026 \ 4$ $\alpha(K)=0.0021 \ 4; \ \alpha(L)=0.00027 \ 4; \ \alpha(M)=5.5\times10^{-5} \ 8; \ \alpha(N+)=1.34\times10^{-5} \ 19$ $\alpha(N)=1.17\times10^{-5} \ 16; \ \alpha(O)=1.63\times10^{-6} \ 23; \ \alpha(P)=8.0\times10^{-8} \ 14$		
919.65 9 923.866 19	0.019 <i>1</i> 1.55 2	919.59 1047.670	(3/2 ⁺ ,5/2 ⁺) 3/2 ⁺	0.0 5/2 ⁺ 123.802 1/2 ⁺	M1,E2		0.0024 4	$\alpha(K) = 0.00193 22$ $\alpha(K) = 0.0021 4; \ \alpha(L) = 0.00026 4; \ \alpha(M) = 5.4 \times 10^{-5} 8;$ $\alpha(N+) = 1.31 \times 10^{-5} 18$ $\alpha(N) = 1.14 \times 10^{-5} 16; \ \alpha(O) = 1.59 \times 10^{-6} 23;$		
954.61 <i>3</i>	0.069 1	1170.637	3/2+	216.080 3/2+	M1,E2		0.0022 4	$\alpha(P)=7.8\times10^{-5} I4$ $\alpha(K)\exp=0.0013 \ 4 \ (1990Su07)$ $\alpha(K)=0.0019 \ 3; \ \alpha(L)=0.00025 \ 4; \ \alpha(M)=5.0\times10^{-5} \ 7;$ $\alpha(N+)=1.21\times10^{-5} \ 17$ $\alpha(N)=1.06\times10^{-5} \ 15; \ \alpha(O)=1.47\times10^{-6} \ 21;$ $\alpha(D)=7.2\times10^{-8} \ 12$		
968.887 <i>21</i>	0.078 <i>3</i>	1047.670	3/2+	78.738 7/2+	E2		0.00184	$\alpha(\mathbf{F})=7.5\times10^{-7.15}$ $\alpha(\mathbf{K})\exp=0.0018\ 3$ $\alpha(\mathbf{K})=0.001578\ 22;\ \alpha(\mathbf{L})=0.000205\ 3;$ $\alpha(\mathbf{M})=4.19\times10^{-5}\ 6;\ \alpha(\mathbf{N}+)=1.012\times10^{-5}\ 15$ $\alpha(\mathbf{N})=8.84\times10^{-6}\ 13;\ \alpha(\mathbf{O})=1.222\times10^{-6}\ 18;$ $\alpha(\mathbf{P})=5.84\times10^{-8}\ 9$		
$1037.0^{\#}_{\#}4$	0.0010 3	1170.637	3/2+	133.623 5/2+						
$1046.4^{\text{#}}$ 3	0.193 15	1170.637	$3/2^+$	123.802 $1/2^+$	M1 E2		0.0010.2	(17) 0.0010.2		
1047.601 ^{<i>u</i>} 11	2.80 7	1047.670	3/2+	0.0 5/2+	M1,E2		0.0018 3	$\begin{aligned} &\alpha(K)\exp=0.0019 \ 3\\ &\alpha(K)=0.00157 \ 24; \ \alpha(L)=0.00020 \ 3; \ \alpha(M)=4.0\times10^{-5}\\ &6; \ \alpha(N+)=9.8\times10^{-6} \ 13\\ &\alpha(N)=8.5\times10^{-6} \ 12; \ \alpha(O)=1.19\times10^{-6} \ 17;\\ &\alpha(P)=5.9\times10^{-8} \ 10\\ &E_{\gamma}: \text{ poor fit, the level energy difference is equal to}\\ &1047.665 \ 7. \end{aligned}$		
1125.97 <i>9</i> 1170.52 <i>5</i>	0.0057 <i>10</i> 0.0034 <i>5</i>	1341.99 1170.637	1/2,3/2 3/2 ⁺	$\begin{array}{ccc} 216.080 & 3/2^+ \\ 0.0 & 5/2^+ \end{array}$				I _γ : from 1990Su07, other: RI=0.060 2 (1995Ku32).		

 ∞

 $^{131}_{55}\mathrm{Cs}_{76}\text{--}8$

L

¹³¹Ba ε decay **2003Sa62,1990Su07** (continued)

$\gamma(^{131}Cs)$ (continued)

$E_{\gamma}^{\dagger\ddagger}$	I_{γ} ^{@b}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
1208.47 <i>11</i> 1218.30 [#] <i>15</i> 1341.98 <i>8</i>	0.0037 <i>4</i> 0.0010 <i>3</i> 0.0023 <i>3</i>	1341.99 1341.99 1341.99	1/2,3/2 1/2,3/2 1/2,3/2	$\begin{array}{ccc} 133.623 & 5/2^+ \\ 123.802 & 1/2^+ \\ 0.0 & 5/2^+ \end{array}$	E_{γ}, I_{γ} : from 1990Su07.

[†] Weighted average from 1976Ge14 (corrected by 1982KhZW), 1980VyZZ, 1990Su07, 1995Ku32 and 2003Sa62 when it is possible besides as noted.

[‡] Reported by 2003Sa62 only.

[#] From 1990Su07.

[@] Averaged from 1976Ge14, 1980VyZZ, 1988Ch44, 1990Me15, 1990Su07, 1995Ku32 besides as noted.

[&] From $\alpha(\exp)$ and δ .

^{*a*} From $\gamma\gamma(\theta)$, except as noted.

^b For absolute intensity per 100 decays, multiply by 0.480 4.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Placement of transition in the level scheme is uncertain.

From ENSDF

 $^{131}_{55}\text{Cs}_{76}$ -11