(HI,xn γ):superdeformed bands

History

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Yu. Khazov, I. Mitropolsky, A. Rodionov	NDS 107, 2715 (2006)	17-Jul-2006	

1988Lu01: ¹⁰⁰Mo(³⁶S,5n γ), E=150 MeV; ⁹⁸Mo(³⁶S,3n γ), E=155 MeV. SD-1 band deduced, the intensity \approx 5% of the total in ¹³¹Ce. POLITESSA array.

1990He12: ${}^{100}Mo({}^{36}S,5n\gamma)$, E=155 MeV. Deduced Q₀, β_2 for SD-1 band. TESSA3 array, DSA method.

1993Pa02: 104 Ru(32 S, $\alpha 3$ n γ), E=160 MeV. Deduced SD-1 band. EUROGAM array.

1998Pe01: ¹¹⁰Pd(²⁸Si, α 3n γ), E=132 MeV. Deduced Q₀ for SD-1 band. GASP array, DSA method.

1993Mu09: ¹¹⁷Sn(¹⁸O,4n γ), E=84 MeV. Deduced Q₀ for SD-1 band. NORDBALL array, DSA method.

1987Be32, 1987Wa18: 98 Mo(40 Ar, $\alpha 3n\gamma$), E=173 MeV, 104 Ru(34 S, $\alpha 3n\gamma$), E=155 MeV. The SD band was assigned incorrectly to 134 Nd through 4n channel (see 1993Pa02; also 1982No02,1990HeZD,1992Ha35).

1996Se03,1996Se04,1996Cl03: 100 Mo(36 S,5n γ), E=155 MeV. Deduced excited SD-1 and SD-2 bands, Q₀ for the bands. GAMMASPHERE and EUROGAM arrays, DSA method.

1998Wi13: ¹⁰⁰Mo(³⁶S,5nγ), E=135, 142, 150, 155, 160, 170 MeV. Measured intensity of SD band populations.

2005Pa30: ¹⁰⁰Mo(³⁶S,5n γ), E=160, 165 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ of SD band transitions using EUROBALL IV spectrometer, deduced two SD bands linked together; the measured energies of γ -rays are higher systematically (1-8 keV) as compared to other measurements.

¹³¹Ce Levels

All data from 2005Pa30 as they are more complete compared to others, except as noted.

E(level) [†]	$J^{\pi \ddagger}$	Comments
y [#]	(29/2+)	Additional information 1. J^{π} : (29/2 ⁺) (2005Pa30). J=17/2 suggested by 1988Lu01 and 21/2 by 1991Pa07, based on feeding of normal states of J^{π} =15/2 to 21/2. However, $J^{\pi} \approx 29/2$ is more likely from a comparison of experimental angular frequencies with $J^{\pi'}$ s of normal states and the SD bands of neighboring nuclides.
591.50+y [#] 10	$(33/2^+)$	Additional information 2.
1253.60+y [#] 10	$(37/2^+)$	
1986.90+y [#] 15	$(41/2^+)$	
2791.98+y [#] 18	$(45/2^+)$	
3509.9+y [@] 4	$(43/2^+)$	
3666.88+y [#] 20	$(49/2^+)$	
4305.5+y [@] 4	$(47/2^+)$	
4610.89+y [#] 23	$(53/2^+)$	
5152.9+y [@] 4	$(51/2^+)$	
5623.39+y [#] 25	$(57/2^+)$	
6061.5+y [@] 4	$(55/2^+)$	
6705.2+y [#] 3	$(61/2^+)$	
7038.2+y [@] 4	$(59/2^+)$	
7858.1+y [#] 3	$(65/2^+)$	
8083.2+y [@] 4	$(63/2^+)$	
9084.8+y [#] 3	$(69/2^+)$	
9196.3+y [@] 4	$(67/2^+)$	
10379.2+y [@] 4	$(71/2^+)$	
10388.2+y [#] 4	$(73/2^+)$	

¹⁹⁸⁹LaZY: ${}^{98}Mo({}^{36}S,3n\gamma)$, E=143, 150 MeV. Deduced Q₀ for SD-1 band, DSA method.

(HI,xny):superdeformed bands	(continued)
------------------------------	-------------

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
11632.1+y [@] 5	$(75/2^+)$	16434.8+y [#] 5	(89/2+)	22556+y [@] 3	$(103/2^+)$
11771.5+y [#] 4	$(77/2^+)$	17382.5+y [@] 5	$(91/2^+)$	23937.1+y [#] 7	$(105/2^+)$
12956.5+y [@] 5	$(79/2^+)$	18170.6+y [#] 5	$(93/2^+)$	24461+y [@] 3	$(107/2^+)$
13238.1+y [#] 4	$(81/2^+)$	19019.1+y [@] 5	$(95/2^+)$	26045.5+y [#] 8	$(109/2^+)$
14354.6+y [@] 5	$(83/2^+)$	20001.1+y [#] 6	$(97/2^+)$	26461+y [@] 3	$(111/2^+)$
14791.5+y [#] 4	$(85/2^+)$	20743+y [@] 3	$(99/2^+)$	28556+y [@] 3	$(115/2^+)$
15828.6+y [@] 5	$(87/2^+)$	21926.1+y [#] 7	$(101/2^+)$		

¹³¹Ce Levels (continued)

[†] From least-squares fit to $E\gamma$'s.

[‡] From γ mult. and Cranked-shell model calculations.

[#] Band(A): SD-1 band (1988Lu01,1990He12,1993Mu09,1993Pa02,1996Se04, 1988Lu01,1987Be32,1993Pa02,2005Pa30). Probable configuration= $\pi 5^4 v 6^1$ (1996Se03,1996Se04). Q(intrinsic)=7.3 4, β_2 =0.38 2 (1998Pe01); β_2 =0.36 2 from Q (1994WaZV). Others: Q₀=7.4 3 (1996Di03,1996Cl03), 5.5 5 (1993Mu09), 6.4 (1994WaZV), ≈ 6.0 (1990He12). Percent population=2.0 to 7.0 depending on projectile energy (1998Wi13); =5 (2005Pa30). The SD band previously assigned (1987Be32,1987Wa18) to ¹³⁴Nd is now assigned to ¹³¹Ce (1993Pa02).

^(a) Band(B): SD-2 band (1996Se03,2005Pa30). Probable configuration= $\pi 5^4 \nu 6^2$ (1996Cl03). This involves excitation of a neutron from 1/2[411] α =+1/2 orbital to 1/2[660] α =-1/2 orbital (1996Cl03,1996Se03). Q(intrinsic)=8.5 4 (1996Se03,1996Cl03), 2 ≈0.43 (1996Se03). Percent population=1.0 to 1.7 (1998Wi13) β ⁻ depending on projectile energy; =1 (2005Pa30).

 $\gamma(^{131}\text{Ce})$

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	Comments
591.5 <i>1</i>	0.38 2	591.50+y	$(33/2^+)$	v	$(29/2^+)$	E2	E_{γ} : 590.73 5 (1996Se04).
662.1 <i>1</i>	0.79 2	1253.60+y	$(37/2^+)$	591.50+y	$(33/2^+)$	E2	DCO=0.9 2.
		5		5			E_{γ} : 661.99 5 (1996Se04).
733.3 1	0.84 2	1986.90+y	$(41/2^+)$	1253.60+y	$(37/2^+)$	E2	DCO=1.0 2.
				-			E_{γ} : 732.52 5 (1996Se04).
788 [@]		3509.9+y	$(43/2^+)$				The transition populates an unspecified states.
795.5 <i>1</i>	0.62 2	4305.5+y	$(47/2^+)$	3509.9+y	$(43/2^+)$	E2	DCO=0.8 2.
805.1 <i>1</i>	1.00	2791.98+y	$(45/2^+)$	1986.90+y	$(41/2^+)$	E2	DCO=0.9 2.
				-			E_{γ} : 804.27 5 (1996Se04).
847.4 <i>1</i>	0.96 2	5152.9+y	$(51/2^+)$	4305.5+y	$(47/2^+)$	E2	DCO=0.8 2.
							E_{γ} : 846.8 <i>1</i> (1996Se03).
874.9 <i>1</i>	0.96 2	3666.88+y	$(49/2^+)$	2791.98+y	$(45/2^+)$	E2	DCO=0.8 2.
							E_{γ} : 873.95 5 (1996Se04).
908.6 <i>1</i>	0.90 2	6061.5+y	$(55/2^+)$	5152.9+y	$(51/2^+)$	E2	DCO=1.0 2.
							E_{γ} : 908.07 <i>10</i> (1996Se03).
944.0 <i>1</i>	0.96 2	4610.89+y	$(53/2^+)$	3666.88+y	$(49/2^+)$	E2	DCO=0.9 2.
							E_{γ} : 942.93 5 (1996Se04).
976.7 <i>1</i>	1.00	7038.2+y	$(59/2^+)$	6061.5+y	$(55/2^+)$	E2	DCO=1.0 2.
							E_{γ} : 975.52 <i>10</i> (1996Se03).
1012.5 1	0.93 2	5623.39+y	$(57/2^+)$	4610.89+y	$(53/2^+)$	E2	DCO=0.8 2.
							E_{γ} : 1011.33 5 (1996Se04).
1045.0 <i>1</i>	0.89 2	8083.2+y	$(63/2^+)$	7038.2+y	$(59/2^+)$	E2	DCO=0.8 2.
							E_{γ} : 1043.13 <i>10</i> (1996Se03).
1081.8 <i>1</i>	0.75 2	6705.2+y	$(61/2^+)$	5623.39+y	$(57/2^+)$	E2	DCO=1.0 2.
							E_{γ} : 1080.48 6 (1996Se04).
1113.1 <i>1</i>	0.79 2	9196.3+y	$(67/2^+)$	8083.2+y	$(63/2^+)$	E2	DCO=1.2 2.
							E_{γ} : 1112.24 <i>11</i> (1996Se03).

(HI,xny):superdeformed bands (continued)

 γ ⁽¹³¹Ce) (continued)</sup>

Mult.# E_{γ} E_i (level) E_f Comments 1152.9 7858.1+y $(65/2^+)$ 6705.2+y $(61/2^+)$ E2 DCO=0.9 2. 0.692E_γ: 1151.28 6 (1996Se04). 1182.9 1 0.81 2 10379.2+y 9196.3+y $(71/2^+)$ $(67/2^+)$ E2 DCO=1.3 2. E_γ: 1181.28 *12* (1996Se03). 0.54 2 1226.7 1 9084.8+y $(69/2^+)$ 7858.1+y $(65/2^+)$ E2 DCO=1.1 2. E_γ: 1225.00 *6* (1996Se04). 1252.9 1 10379.2+y 0.69 2 11632.1+y $(75/2^+)$ $(71/2^+)$ E2 DCO=1.1 2. E_v: 1250.71 12 (1996Se03). 1303.4 1 0.51 2 10388.2+y 9084.8+y DCO=1.1 2. $(73/2^+)$ $(69/2^+)$ E2 E_γ: 1301.38 6 (1996Se04). 1324.4 1 0.66 2 12956.5+y $(79/2^+)$ 11632.1+y $(75/2^+)$ E2 DCO=1.1 2. Ey: 1322.04 12 (1996Se03). 1383.3 *1* 0.38 2 11771.5+y $(77/2^+)$ 10388.2+y $(73/2^+)$ E2 DCO=1.1 2. E_γ: 1381.11 8 (1996Se04). 1398.1 1 DCO=1.1 2. 0.61 2 14354.6+y $(83/2^+)$ 12956.5+y $(79/2^+)$ E2 E_γ: 1396.22 *15* (1996Se03). 1466.6 1 0.32 2 13238.1+y $(81/2^+)$ 11771.5+y $(77/2^+)$ E2 DCO=1.1 2. E_γ: 1464.06 8 (1996Se04). 1474.0 1 0.54 2 15828.6+y $(87/2^+)$ 14354.6+y $(83/2^+)$ E2 DCO=1.0 2. E_γ: 1470.66 15 (1996Se03). 1513.9 4 0.06 1 4305.5+y $(47/2^+)$ 2791.98+y (45/2⁺) (M1+E2) DCO=1.9 4. 1522.6 4 0.07 1 3509.9+y $(43/2^+)$ 1986.90+y (41/2⁺) (M1+E2) DCO=1.9 3. $(85/2^+)$ 0.23 2 1553.4 *1* 14791.5+y 13238.1+y $(81/2^+)$ E2 DCO=1.2 2. E_γ: 1549.89 10 (1996Se04). 1553.9 2 0.49 2 17382.5+y $(91/2^+)$ 15828.6+y $(87/2^+)$ E2 DCO=1.1 2. E_γ: 1551.81 19 (1996Se03). 1636.6 1 0.38 2 19019.1+y $(95/2^+)$ 17382.5+y $(91/2^+)$ E2 DCO=1.2 2. E_γ: 1634.80 20 (1996Se03). 1643.2 2 0.16 1 16434.8+y $(89/2^+)$ 14791.5+y $(85/2^+)$ E2 DCO=1.2 2. E_γ: 1640.26 12 (1996Se04). 1723.5 25 0.27 2 20743+y $(99/2^+)$ 19019.1+y $(95/2^+)$ E2 DCO=1.1 2. E_γ: 1723.02 25 (1996Se04). 1735.8 2 0.14 1 18170.6+y $(93/2^+)$ 16434.8+y $(89/2^+)$ DCO=1.0 2. E2 E_γ: 1731.50 15 (1996Se04). 1813.4 3 0.21 2 22556+y $(103/2^+)$ 20743 + y $(99/2^+)$ E2 DCO=1.1 2. 1830.5 3 $0.08 \ l$ 20001.1+y $(97/2^+)$ 18170.6+y $(93/2^+)$ E2 DCO=1.0 2. E_γ: 1822.0 *3* (1996Se04). 1905.3 3 0.12 2 $(107/2^+)$ $(103/2^+)$ 24461+y 22556+y E2 DCO=1.3 3. 1925.0 3 0.04 1 21926.1+y $(101/2^+)$ 20001.1+y $(97/2^+)$ E2 DCO=1.0 3. $(111/2^+)$ 1999.6 4 0.05 1 26461+y 24461 + y $(107/2^+)$ E2 DCO=0.8 3. $(105/2^+)$ 0.02 1 23937.1+y $(101/2^+)$ 2011.0 3 21926.1+y 2094.6 5 0.02 1 28556+y $(115/2^+)$ 26461+y $(111/2^+)$ 2108.4 4 0.01 1 26045.5+y $(109/2^+)$ 23937.1+y $(105/2^+)$

[†] From 2005Pa30, Eγ values are discrepant from 1988Lu01, 1996Se03 and 1996Se04 within 1-8.5 keV.

[‡] From 2005Pa30.

[#] From angular intensity ratio DCO=I($\gamma\gamma$)(measured at 158°, gated at 90°)/I($\gamma\gamma$)(measured at 90°, gated at 158°) values of ≈ 1.0 are expected for $\Delta J=2$, a stretched E2 transition, and of ≈ 0.65 for $\Delta J=1$, pure stretched dipole transitions. Two linking transitions have R values of ≈ 1.9 , and rather imply mixed M1+E2 $\Delta J=1$ character with large $\delta > 0$ (2005Pa30).

[@] Placement of transition in the level scheme is uncertain.

(HI,xn γ):superdeformed bands

¹³¹₅₈Ce₇₃

4

$(HI,xn\gamma)$:superdeformed bands

		Band(B): SD-2 band (1996Se03 2005Pa30)			
Band(A): S	D-1 band	(19905003	,2005Pa50)		
(1988Lu01, 1993Mn09	1990He12, 1993Pa02	(115/2+)	28556+y		
1996Se04, 1	1988Lu01,				
1987Be32,1	1993Pa02,	209	5		
2005P	(a30)	(111/2+)	26461±v		
(109/2+)	26045.5+y	(111/2)	20401+y		
		200	0		
2108		(10=(0+))	04461		
(105/2+)	23037 1±v	(107/2+)	24461+y		
(105/2)	25757.1+y	100	-		
2011		(102/2+)	00556		
(101/2+)	2102(1)	(103/2+)	22550+y		
(101/2+)	21926.1+y	101	2		
		(00/2+)	э 207/3+х		
(0=/0+)	20001.1	())[2])	2014349		
(9//2+)	20001.1+y	172	4		
1920		(95/2+)	19019.1+y		
(02/2+)	10170 6 1				
(93/2*)	101/0.0+y	163	7		
1736		(91/2 ⁺)	17382.5+y		
(89/2+)	16434.8+y	155	4		
		(87/2+)	- 15828.6+y		
1643					
(85/2+)	14791.5+y	147 (82/2+)	4 14354 6 m		
1552		(63/2*)	14554.0+y		
(81/2+)	13238.1+v	139	8		
		(79/2 ⁺)	12956.5+y		
1467	11771 5	132	4		
(1112)	11//1.5+y	(75/2 ⁺)	11632.1+y		
1383		125	3		
$(73/2^+)$	10388.2+y	(71/2 ⁺)	10379.2+y		
1303		(67/2+) 118	3 0106 2 1		
(69/2+)	9084.8+y	(0//2+)	9190.3+y		
1227		(63/2 ⁺) ¹¹¹	³ 8083.2+v		
(65/2 ⁺)	7858.1+y		-		
(61/2+) 1153	6705 2±v	(59/2+)	5 7038.2+y		
	0705.219	(55/2+) 97	⁷ 6061 5±v		
(57/2+)	5623.39+y	(3312)			
1012		$(51/2^+)$ 90	9 5152.9+y		
$(53/2^+)$ 1012	4610.89+y	(47/2 ⁺) ⁸⁴	⁷ 4305.5+y		
(49/2 ⁺) 944	3666.88+y	(43/2+) 79	5 3500 Q±v		
(45/2+) 875	2701 09 /		5509 . 9+9		
(45/2)	2/91.98+y	/			
(41/2+) 805	1986.90+y				
$(37/2^+)$ 733	1253.60+y				
(33/2+) 662	591.50+y				
(29/2 ⁺) 592	у				

¹³¹₅₈Ce₇₃