$^{131}_{58}$ Ce₇₃-1

¹³¹Pr ε decay (1.51 min) 1996Gi08,1983ViZU

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Yu. Khazov, I. Mitropolsky, A. Rodionov	NDS 107, 2715 (2006)	17-Jul-2006	

Parent: ¹³¹Pr: E=0.0; $J^{\pi}=(3/2^+)$; $T_{1/2}=1.51 \text{ min } 2$; $Q(\varepsilon)=5.44\times10^3 6$; $\%\varepsilon+\%\beta^+$ decay=100.0

1996Gi08: ¹³¹Pr ε decay [from ⁹⁶Mo(⁴⁰Ca,2p3n), E=255 MeV]. Measured x, γ , $\gamma\gamma(t)$, $x\gamma(t)$, cex(t), $ce\gamma(t)$, $T_{1/2}$. Mass-separator, He-jet transport, magnetic electron spectrometer. Comparison with Interacting Boson-Fermion Model calculations.

1966No05: ¹³¹Ce [from ¹³⁰Ba(α ,3n), E≈40 MeV and ¹³⁰Ba(³He,2n), E≈20 MeV]; measured x, γ , ce, β^+ spectra deduced ¹³¹Ce $\%\beta^+$, T_{1/2}. Ge(Li), NaI(Tl), Si(Li) spectrometers, chemical procedures.

1983ViZU, 1983AkZZ: ¹³¹Pr ε decay [from Ta(p,X), E=1000 MeV]. Measured γ , $\gamma\gamma$, T_{1/2}. Mass-separation. Others: 1973De25, 1977Gi17.

¹³¹Ce Levels

The decay scheme is that of 1996Gi08, except as noted. It is built on the basis of coincidence data, energy relationships and multipolarities of the transitions. The level energies in 1996Gi08 are lower by 0.5 keV, on average, than the level energies calculated by GTOL code using E_{γ} of 1996Gi08. The level scheme of 1983ViZU is not as complete as of 1996Gi08 and contradicts it somewhat; evaluators have excluded 440.56, 884.1 and 947.6 keV levels from 1983ViZU level scheme so far as each of them was introduced by two transitions on the basis of energy relationship only.

E(level) [‡]	$J^{\pi \#}$	T _{1/2}	Comments
0.0	(7/2 ⁺)	10.3 min <i>3</i>	$%ε+%β^+=100; %β^+=11 3 (1966No05)$ Eβ ⁺ (max)=2.8 MeV 4 from 1966No05. T _{1/2} : weighted average of 10.5 min 6 (γ(t) 1966No05), 10.2 min 3 (γ(t) 1983ViZU). Other: ≈8.5 min (1973De25).
63.11 9	1/2+	5.4 min 5	% ε +% β ⁺ =?; %IT=? T _{1/2} : weighted average of 5.6 min 5 (1983AkZZ), 5 min 1 (1966No05). Other: ≈5 min (1973De25).
$\begin{array}{c} 135.94 \ 9 \\ 257.08 \ 11 \\ 329.26 \ 10 \\ 342.67 \ 10 \\ 348.49 \ 10 \\ 387.52 \ 8 \\ 427.91 \ 10 \\ 470.95 \ 11 \\ 474.80 \ 15 \\ 543.1 \ 3 \\ 576.66 \ 18 \\ 609.6 \ 4 \\ 644.66^{\dagger} \ 18 \\ 648.14 \ 12 \\ 717.99 \ 20 \\ 739.77 \ 21 \\ 744.7 \ 5 \\ 753.28 \ 18 \\ \end{array}$	$3/2^{+}$ $9/2^{+}$ $(5/2,3/2)^{+}$ $(3/2,5/2)^{+}$ $(5/2,3/2)^{+}$ $(3/2,5/2,7/2)^{+}$ $(1/2^{+},3/2^{+},5/2^{+})$ $7/2^{+}$ $11/2^{+}$ $(1/2^{+},3/2^{+},5/2^{+})$ $(7/2,9/2)^{+}$ $(3/2^{+},5/2^{+})$ $(3/2^{+},5/2^{+})$ $(3/2^{+},5/2^{+})$ $(3/2^{+},5/2^{+})$ $(3/2^{+},5/2^{+})$ $(3/2^{+},5/2^{+})$ $(3/2^{+},5/2^{+})$ $(3/2^{+},5/2^{+})$		
762.4 3 791.70 14 848.30 12 928.76 14 1009.7 4 1117.26 18 1236.7 4	$\begin{array}{c} (3/2^+, 3/2^+) \\ (5/2^+) \\ (3/2^+, 5/2^+) \\ (3/2, 5/2) \\ (3/2, 5/2) \\ (3/2, 5/2) \end{array}$		

¹³¹Pr ε decay (1.51 min) 1996Gi08,1983ViZU (continued)

¹³¹Ce Levels (continued)

E(level)[‡]

1276.45 12 2057.40 17

[†] The level was introduced by 1983ViZU.
[‡] From least-squares fit to Eγ's.
[#] From γ-mult.

$\gamma(^{131}\text{Ce})$

Iy normalization: Not given as the level scheme is incomplete. I(γ^{\pm}) \approx 850.

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_i (level)	${f J}^\pi_i$	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. &	α^{a}	Comments
58.6 2 72.84 5	14 <i>3</i> 210 20	387.52 135.94	$(5/2,3/2)^+$ $3/2^+$	329.26 63.11	$(5/2,3/2)^+$ $1/2^+$	M1	2.99	$\alpha(K)=2.55\ 8;\ \alpha(L)=0.349\ 11;\ \alpha(M)=0.0728\ 22;$ $\alpha(N+)=0.0199\ 6$
79.39 9 ^x 103.3 [@] ^x 114.2 [@] ^x 117.3 [@]	25 4 ≈2.6 [@] ≈2.2 [@] ~2 2 [@]	427.91	(3/2,5/2,7/2) ⁺	348.49	5/2+			α (K)exp=2.88 29; K/L=0.16 44 (1990G108)
$117.5 \\ 122.5 \\ 4 \\ 126.1 \\ 2 \\ 128.20 \\ 17 \\ x_{1}52 \\ 3^{@} \\ 3 \\ 3$	≈ 2.2 ≈ 4 9 3 12 3 2 2 [@] 9	470.95 474.80 470.95	$(1/2^+, 3/2^+, 5/2^+)$ $7/2^+$ $(1/2^+, 3/2^+, 5/2^+)$	348.49 348.49 342.67	5/2 ⁺ 5/2 ⁺ (3/2,5/2) ⁺			
176.5 4	12 3	648.14	$(7/2,9/2)^+$	470.95	$(1/2^+, 3/2^+, 5/2^+)$			
188.8 2 193.37 6	5 <i>I</i> 24 <i>3</i>	329.26	$(1/2^+, 3/2^+, 5/2^+)$ $(5/2, 3/2)^+$	387.52 135.94	(5/2,3/2)* 3/2 ⁺	M1,E2	0.198 9	α (K)=0.159 3; α (L)=0.031 10; α (M)=0.0066 21; α (N+)=0.0018 6 α (K)exp=0.27 6 (1996Gi08)
206.73 6 212.56 7	70 <i>15</i> 100	342.67 348.49	(3/2,5/2) ⁺ 5/2 ⁺	135.94 135.94	3/2 ⁺ 3/2 ⁺	M1	0.147	$\alpha(K)=0.125 \ 4; \ \alpha(L)=0.0168 \ 5; \ \alpha(M)=0.00350 \ 11; \ \alpha(N+)=0.00096 \ 3 \ \alpha(K)=0.125 \ 20; \ K/L>5 \ 5 \ (1996Gi08)$
$x_{214.7}^{@} 3$ $x_{224.00}^{@} 15$ $x_{244.1}^{@} 2$	5.3 [@] 22 7.5 [@] 30 13.6 [@] 13							
248.0 5 251.49 7	4 <i>I</i> 90 <i>I</i> 0	576.66 387.52	$(1/2^+, 3/2^+, 5/2^+)$ $(5/2, 3/2)^+$	329.26 135.94	(5/2,3/2) ⁺ 3/2 ⁺	M1	0.093	$\alpha(K)=0.0796\ 24;\ \alpha(L)=0.0107\ 4;\ \alpha(M)=0.00221\ 7;\ \alpha(N+)=0.00060\ 2$ $\alpha(K)\exp=0.098\ 23\ (1996Gi08)$ ce: contaminated line or doublet in ce-spectrum.
257.07 <i>11</i> 266.14 7	35 7 190 20	257.08 329.26	9/2 ⁺ (5/2,3/2) ⁺	0.0 63.11	(7/2 ⁺) 1/2 ⁺	E2,M1	0.076 5	$\alpha(K)=0.063 \ 6; \ \alpha(L)=0.0104 \ 13; \ \alpha(M)=0.0022 \ 3; \\ \alpha(N+)=0.00059 \ 8 \\ \alpha(K)\exp=0.060 \ 6 \ (1996Gi08)$
^x 273.9 [@] 3 278.48 15 279.55 7	5.7 [@] 26 10 <i>I</i> 100 <i>I</i> 5	753.28 342.67	$(3/2,5/2)^+$ $(3/2,5/2)^+$	474.80 63.11	7/2 ⁺ 1/2 ⁺	E2,M1	0.066 5	$\alpha(K)=0.054$ 6; $\alpha(L)=0.0089$ 9; $\alpha(M)=0.00188$ 22;

			¹³¹ Pr	ε decay	(1.51 min) 1996	5Gi08,1983	WiZU (con	tinued)
γ ⁽¹³¹ Ce) (continued)								
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\#}$	E_i (level)	J_i^{π}	E_f	${ m J}_f^\pi$	Mult. ^{&}	α^{a}	Comments
								α (N+)=0.00050 5 α (K)exp=0.044 <i>10</i> (1996Gi08) ce: contaminated line or doublet in ce-spectrum.
280.42 ^{‡@} 16	22 [@] 7	928.76	(3/2,5/2)	648.14	(7/2,9/2)+			ľ
284.2 ^{‡@} 2	8.8 [@] 4	928.76	(3/2,5/2)	644.66				
285.39 7	90 10	348.49	5/2+	63.11	1/2+			
286.0 4	72	543.1	$\frac{11}{2^{+}}$	257.08	$9/2^+$			
291.2 4 292.04 7	40 8 80 <i>15</i>	762.4 427.91	$(3/2, 5/2, 7/2)^+$	470.95 135.94	(1/2 ⁺ ,3/2 ⁺ ,3/2 ⁺) 3/2 ⁺	M1	0.0626	α (K)=0.0535 <i>16</i> ; α (L)=0.00714 <i>22</i> ; α (M)=0.00148 <i>5</i> ; α (N+)=0.00040 <i>1</i> α (K)exp=0.080 <i>19</i> (1996Gi08)
200 55 21	8 2	648 14	$(7/2 0/2)^+$	3/18/10	5/2+			ce: contaminated line or doublet in ce-spectrum.
305.42 10	25 4	648.14	$(7/2,9/2)^+$	342.67	$(3/2,5/2)^+$	M1,E2	0.051 5	$\alpha(K)=0.042\ 6;\ \alpha(L)=0.0067\ 4;\ \alpha(M)=0.00142\ 11;\ \alpha(N+)=0.00038\ 2$ $\alpha(K)=n=0.046\ 6\ (1996Gi08)$
$x_{307.6}^{@}$ 2	$6.6^{@} 26$							
315.5 [@] 2	19.8 [@] 22	644.66		329.26	$(5/2,3/2)^+$			Coincides with 266.15 γ .
316.7 4	14 4	791.70	$(5/2^+)$	474.80	7/2+			
319.00 20	21 4	648.14	$(7/2, 9/2)^+$	329.26	$(5/2,3/2)^+$			E_{γ} : unplaced in level scheme of 1983ViZU.
$x_{322.1}^{@}$ 3	19 [@] 7							
324.36 8	100 20	387.52	$(5/2,3/2)^+$	63.11	$1/2^+$	F2 M1	0.020.5	$(T_{1}) = 0.022.5$ $(T_{1}) = 0.0050(.0)$ $(M_{1}) = 0.0010(.4)$
334.96 9	140 20	470.95	(1/2',3/2',5/2')	135.94	3/2*	E2,M1	0.039 5	$\alpha(K)=0.033$ 5; $\alpha(L)=0.00506$ 9; $\alpha(M)=0.00106$ 4; $\alpha(N+)=0.00029$ 1 $\alpha(K)\exp=0.031$ 8 (1996Gi08)
339.05 21	55 6	474.80	7/2+	135.94	3/2+			
364.7 [@] 2	48 [@] 13	427.91	$(3/2,5/2,7/2)^+$	63.11	$1/2^{+}$			
376.5 4	3 1	717.99	$(3/2^+, 5/2^+)$	342.67	$(3/2,5/2)^+$			E_{γ} : poor fit: the energy value between levels is equal to 375.32 18.
377.25 ^{‡@} 17	8.4 [@] 22	848.30	$(3/2^+, 5/2^+)$	470.95	$(1/2^+, 3/2^+, 5/2^+)$			
387.54 8	90 10	387.52	(5/2,3/2)+	0.0	(7/2 ⁺)	M1,E2	0.026 4	α (K)=0.022 4; α (L)=0.00327 13; α (M)=0.00069 2; α (N+)=0.00018 1 α (K)exp=0.021 3; K/L>6.3 (1996Gi08) L 167 12 in 1082Vi7U
391.3.5	4 2	739.77	$(3/2^+, 5/2^+)$	348.49	5/2+			1_{γ} . 107 12 III 1903 VIZU.
396.2 ^b 4	7^{b}_{3}	739.77	$(3/2^+, 5/2^+)$	342.67	$(3/2,5/2)^+$			E_{γ} : poor fit: the energy value between levels is equal to 397.10 <i>19</i> .
$396.2^{b} 4$	7^{b}_{3}	744.7	(9/2+)	348.49	5/2+			
410.76^{b} 28	3^{b}_{l}	739 77	$(3/2^+, 5/2^+)$	329.26	$(5/2,3/2)^+$			
410.76 ^b 28	3^{b}_{1}	753.28	$(3/2,5/2)^+$	342.67	$(3/2,5/2)^+$			
			× 1 / 1 /	/	× 1 / 1 /			

4

From ENSDF

 $^{131}_{58}\text{Ce}_{73}\text{-}4$

 $^{131}_{58}\text{Ce}_{73}$ -4

¹³¹ Pr ε decay (1.51 min) 1996Gi08,1983ViZU (com								ontinued)		
γ ⁽¹³¹ Ce) (continued)										
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\#}$	E _i (level)	${ m J}^{\pi}_i$	E_f	J_f^π	Mult. <mark>&</mark>	α^{a}	Comments		
414.1 3	15 2	762.4	$(3/2^+, 5/2^+)$	348.49	5/2+					
≈419	10 3	762.4	$(3/2^+, 5/2^+)$	342.67	$(3/2,5/2)^+$					
420.45 [@] 15	39 [@] 7	848.30	$(3/2^+, 5/2^+)$	427.91	$(3/2, 5/2, 7/2)^+$					
423.7 4	42	753.28	$(3/2,5/2)^+$	329.26	$(5/2,3/2)^+$					
428.15 ^{^w} 8	52 ^w 7	1276.45		848.30	$(3/2^+, 5/2^+)$					
^x 440.60 ^{^w} 12	67 ^{w} 7				a vat					
441.3 3	80 8	576.66	$(1/2^+, 3/2^+, 5/2^+)$	135.94	3/2+	M1	0.0215	$\alpha(K)=0.0184 6; \alpha(L)=0.00243 8; \alpha(M)=0.00050 2; \alpha(N+)=0.00014 1 \alpha(K)exp=0.022 3 (1996Gi08)$		
443.4 4	10 3	791.70	$(5/2^+)$	348.49	5/2+					
^x 460.7 [@] 3	≈6.6 [@]									
^x 465.0 [@] 3	8.6 [@] 22									
^x 471.0 [@] 3	17 [@] 4									
473.7 4	25 2	609.6		135.94	3/2+					
474.3 3	40 4	1236.7		762.4	$(3/2^+, 5/2^+)$					
$x^{x}499.5^{\textcircled{0}}2$	8.4 [@] 18									
505.0 4	52	848.30	$(3/2^+, 5/2^+)$	342.67	$(3/2,5/2)^+$					
543.24	12	543.1	11/21	0.0	$(1/2^{+})$					
*547.3	≈6.6 [°]	717.00	(2/2 + 5/2 +)	125.04	2/2+			E . in 1002Vi7U is placed from 644.72 level		
586 18 13	32 84	928.76	$(3/2^{+}, 3/2^{+})$ (3/2, 5/2)	342 67	$\frac{5}{2}$			E_{γ} . In 1983 vizo is placed from 644.72 level.		
599.7 7	18 4	928.76	(3/2, 5/2) (3/2, 5/2)	329.26	$(5/2,3/2)^+$					
604.2 4	15 4	739.77	$(3/2^+, 5/2^+)$	135.94	3/2+					
$x_{609.4}^{@}$ 2	24 [@] 7									
626 1	4 2	762.4	$(3/2^+, 5/2^+)$	135.94	3/2+					
646.5 [@]	≈2.6 [@]	1117.26	(3/2,5/2)	470.95	$(1/2^+, 3/2^+, 5/2^+)$					
^x 652.36 [@] 10	7.9 [@] 22									
655.76 12	13 3	791.70	$(5/2^+)$	135.94	3/2+					
661 1	42	1009.7	(3/2,5/2)	348.49	$5/2^+$					
667.26	83	1009.7	(3/2,5/2)	342.67	(3/2,5/2)					
×6//.58° 12	33 4									
×6/9.9 3	7.5 18									
^x 690.6 ^w	≈3 [@]	040.20	(2/2 + 5/2 +)	125.04	2/0+					
/11.9 0 729 <i>1</i>	55 15 12 3	848.30 701 70	$(3/2^+, 3/2^+)$ $(5/2^+)$	155.94 63.11	$\frac{5}{2^{+}}$			E_{γ} : unweighted ave.		
769.18 20	12.5	1117.26	(3/2) (3/2.5/2)	348.49	$5/2^+$			E_{α} : poor fit: the energy value between levels is equal to		
			(-,-,-,-)	5.0.17	-,-			768.77 16.		
774.3 8	10 3	1117.26	(3/2,5/2)	342.67	$(3/2, 5/2)^+$			E_{γ} : unweighted ave.		
$x778.4^{\textcircled{0}}2$	4.8 [@] 9									
785.39 19	52	848.30	$(3/2^+, 5/2^+)$	63.11	1/2+					

 $^{131}_{58}$ Ce₇₃-5

L

 $^{131}_{58}\text{Ce}_{73}\text{-}5$

From ENSDF

¹³¹Pr ε decay (1.51 min) 1996Gi08,1983ViZU (continued)

$\gamma(^{131}\text{Ce})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	${ m J}_f^\pi$	Comments
787.4 3	10 3	1117.26	(3/2,5/2)	329.26	(5/2,3/2)+	E_{γ} : poor fit: the energy value between levels is equal to 788.00 16.
^x 824.0 [@]	≈3.5 [@]					
848.7 ^{‡@} 2	8.8 [@] 18	1276.45		427.91	$(3/2, 5/2, 7/2)^+$	
873.7 6	20 5	1009.7	(3/2, 5/2)	135.94	3/2+	
^x 930.0 ^w 3	10 3					
940.2+	≈3.1 [@]	2057.40		1117.26	(3/2,5/2)	
^x 944.4 ^w 3	4.4 ^w 22					
x963 @	≈3.1 [®]	1117.26	(2 0 5 0)	125.04	2/2+	Γ , may fit the energy value between levels is equal to $0.81.22.16$
$x_{1007.4}^{0}$	$\sim 1^{0}$	1117.20	(3/2,3/2)	155.94	5/2	E_{γ} , poor int. the energy value between levels is equal to 981.52 10.
$x_{1031,3}^{x_{1031,4}}$	$^{\sim 4}$ 17.6 [@] 22					
$x_{10464}^{a} 4$	$35^{(0)}$ 13					
$1117.0^{\ddagger@}$	$6.6^{@} 26$	1117.26	(3/2, 5/2)	0.0	$(7/2^+)$	F _w : from 1983ViZU placed by evaluators
$x_{1155.8}^{a}$ 3	$8.4^{@}$ 35	1117.20	(3/2,3/2)	0.0	(12)	Ly. nom 1965 (Leo, placed by conducts).
^x 1183.6 [@]	4.4 [@] 18					
$x_{1189.0}^{a}$ 4	5.7 [@] 26					
1276.3 ^{‡@} 2	11.9 [@] 18	1276.45		0.0	$(7/2^+)$	E_{γ} : from 1983ViZU, placed by evaluators.
^x 1429.1 [@] 3	6.6 [@] 13					
^x 1542.7 [@] 3	7.5 [@] 13					
$x_{1585.0}^{@} 5$	7.0 [@] 18					
1669.7 ^{‡@} 2	9.7 [@] 13	2057.40		387.52	$(5/2, 3/2)^+$	
^x 1781.8 [@]	≈4 [@]					
1921.8 ^{‡@} 3	13.6 [@] 22	2057.40		135.94	3/2+	
^x 1927.7 [@] 6	≈4 [@]					
^x 1968.8 [@] 3	8.4 [@] 26					
1994.3 ^{‡@} 3	9.4 [@] 22	2057.40		63.11	1/2+	

[†] Weighted average from 1996Gi08 and 1983ViZU, except as noted.

 \ddagger The transition were introduced into level scheme using energy relationship only.

[#] From 1996Gi08, except as noted.

[@] From 1983ViZU. Iy was multiplied by 4.4 to adjust to scale of 1996Gi08.

& From $\alpha(\exp)$.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹³¹Pr ε decay (1.51 min) **1996Gi08,1983ViZU** (continued)

 $\gamma(^{131}\text{Ce})$ (continued)

^{*b*} Multiply placed with intensity suitably divided. ^{*x*} γ ray not placed in level scheme.

¹³¹Pr ε decay (1.51 min) 1996Gi08,1983ViZU

 $^{131}_{58}\mathrm{Ce}_{73}$

¹³¹Pr ε decay (1.51 min) 1996Gi08,1983ViZU

Decay Scheme (continued) Intensities: Relative I_{γ}