130 I β^- decay (8.84 min) 1974Me17

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh	NDS 93, 33 (2001)	11-May-2001			

Parent: ¹³⁰I: E=39.9542 *13*; $J^{\pi}=2^+$; $T_{1/2}=8.84 \text{ min } 6$; $Q(\beta^-)=2949 \ 3$; $\%\beta^-$ decay=16 2

 130 I-% β^- decay: %IT=84 2, % β^- =16 2.

1974Me17 (also 1973Ho25): measured E γ , I γ , $\gamma\gamma$, T_{1/2}.

1999SaZW: measured E γ , I γ using GAMS 1,2,3 (curved-crystal) spectrometer.

1972Ba51: measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, E β , I β , $\beta\gamma$ coin, T_{1/2}.

1970Qa03 (also 1970Qa02): $E\gamma$, $I\gamma$, $E\beta$, $I\beta$, $\beta\gamma$, $T_{1/2}$.

Others: 1974Di03, 1968Re04, 1967Ke12, 1967Ke11, 1966Wi15.

¹³⁰Xe Levels

E(level) [†]	$J^{\pi \ddagger}$						
0.0	0^{+}	1808.127 20	(4^{+})	2494.10 4		2644.87 5	
536.068 6	2+	2150.193 25	(2^{+})	2502.211 25	1,2	2762.6 3	1,2
1122.120 10	2+	2296.09 5	1,2	2544.43 8			
1204.603 19	4+	2307.78? 18	1,2	2628.38? 10			
1632.489 20	3+	2385.50 22		2637.51? 5			

[†] From least-squares fit to $E\gamma's$.

[‡] From Adopted Levels.

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(226 3)	2762.6	0.00088 17	7.1 1	av E β =62.8 10
(344 3)	2644.87	0.022 3	6.3 1	av $E\beta = 100.0 \ 10$
(351 3)	2637.51?	0.0099 14	6.7 1	av $E\beta = 102.4 \ 10$
(361 3)	2628.38?	0.0050 8	7.0 1	av $E\beta = 105.4 \ 10$
(445 3)	2544.43	0.0051 8	7.3 1	av $E\beta = 133.8 \ II$
(487 3)	2502.211	0.102 14	6.2 1	av $E\beta = 148.5 \ 11$
(495 3)	2494.10	0.019 3	6.9 1	av $E\beta = 151.3 \ II$
(603 3)	2385.50	0.0038 8	7.9 1	av $E\beta = 190.5 11$
(681 3)	2307.78?	0.0022 5	8.3 1	av $E\beta = 219.5 \ 12$
(693 3)	2296.09	0.035 6	7.1 <i>1</i>	av E β =223.9 12
(839 3)	2150.193	0.51 7	6.3 1	av $E\beta = 280.4 \ 12$
(1356 3)	1632.489	0.0065 10	8.9 1	av E β =494.4 13
1850 80	1122.120	1.15 15	7.2 1	av $E\beta = 718.5 \ 14$
				E(decay): from 1970Qa03.
2480 50	536.068	14.0 18	6.6 1	av E β =984.2 14
				E(decay): from 1970Qa03. Other: 1972Ba51.

[†] Absolute intensity per 100 decays.

$^{130}\mathbf{I}\,\beta^-$ decay (8.84 min) 1974Me17 (continued)

 $\gamma(^{130}\text{Xe})$

I γ normalization: Σ (I(γ +ce) of γ 's to g.s.)=100.

Eγ	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π
352.27 20	0.007 2	2502.211	1,2	2150.193	(2^{+})
427.93 4	0.0022 6	1632.489	3+	1204.603	4 ⁺
510.35 2	0.023 3	1632.489	3+	1122.120	2^{+}
536.066 [‡] 6	100	536.068	2^{+}	0.0	0^+
586.049 [‡] 8	6.81 22	1122.120	2+	536.068	2+
603.5 4	0.0013 1	1808.127	(4^{+})	1204.603	4+
668.54 2	0.069 4	1204.603	4+	536.068	2+
685.99 2	0.0022 1	1808.127	(4^{+})	1122.120	2+
837.03 25	0.0051 2	2644.87		1808.127	(4^{+})
946.0 [@] 5	0.005 2	2150.193	(2^{+})	1204.603	4+
1028.11 4	0.249 10	2150.193	(2^{+})	1122.120	2+
1096.48 6	0.016 2	1632.489	3+	536.068	2+
1122.15 5	1.07 4	1122.120	2+	0.0	0^{+}
1174.22 25	0.0081 20	2296.09	1,2	1122.120	2+
1263.5 <i>3</i>	0.013 3	2385.50		1122.120	2^{+}
1272.12 4	0.0016 1	1808.127	(4^{+})	536.068	2^{+}
1380.15 4	0.229 9	2502.211	1,2	1122.120	2+
1440.18 8	0.068 4	2644.87		1204.603	4+
1614.10 4	2.85 10	2150.193	(2^{+})	536.068	2^{+}
1759.97 5	0.188 20	2296.09	1,2	536.068	2^{+}
1849.3 <i>3</i>	0.011 2	2385.50		536.068	2^{+}
1958.02 4	0.118 6	2494.10		536.068	2+
1966.04 4	0.332 17	2502.211	1,2	536.068	2^{+}
x1989.10 20	0.015 4				
2008.35 8	0.029 3	2544.43		536.068	2^{+}
^x 2029.3 4	0.0027 12				
2092.29 10	0.032 3	2628.38?		536.068	2^{+}
2101.42 5	0.063 4	2637.51?		536.068	2^{+}
2108.80 5	0.065 4	2644.87		536.068	2+
2150.15 5	0.133 6	2150.193	(2^{+})	0.0	0^{+}
2296.21 12	0.024 2	2296.09	1,2	0.0	0^{+}
2307.76 18	0.014 2	2307.78?	1,2	0.0	0^{+}
2502.20 5	0.084 4	2502.211	1,2	0.0	0^{+}
2544.0 6	0.0033 10	2544.43		0.0	0^{+}
2762.6 3	0.0056 8	2762.6	1.2	0.0	0^{+}

 † A 3% uncertainty is added in quadrature to account for the uncertainty in the efficiency calibration. ‡ From curved-crystal measurements of 1999SaZW.

[#] For absolute intensity per 100 decays, multiply by 0.16 2. [@] Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

¹³⁰I β^- decay (8.84 min) 1974Me17

