130 Sb β^- decay (39.5 min) 1972Ke28

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	NDS 93, 33 (2001)	11-May-2001					

Parent: ¹³⁰Sb: E=0.0; $J^{\pi}=(8^{-})$; $T_{1/2}=39.5 \text{ min } 8$; $Q(\beta^{-})=4959 \ 25$; $\%\beta^{-} \text{ decay}=100.0$

1972Ke28 (also 1973Ke21): measured $E\gamma$, $I\gamma$, $\gamma\gamma$, ce, $E\beta$, $\beta\gamma$, $\gamma\gamma(t)$.

1979Bo26: measured four $E\gamma$'s with a curved-crystal spectrometer.

γ, *γγ*: 1974Kr20, 1974Er07, 1971Ki22. Others: 1969Dz04, 1966To02, 1964BeZZ, 1963La15, 1962Ha16, 1962Dr01. *β*, *βγ*: 1990St13.

 $T_{1/2}(^{130}Sb)$, production, etc.: 1974Gr29, 1974Fo06, 1967Ha27, 1965Br34, 1963Br18.

¹³⁰Te Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0	0^{+}		2781.88 23	(7^{-})	3564.98 23	$(7,8^+)$
839.52 6	2^{+}		2878.17 15	$(7,8,9)^{-}$	3707.90 23	
1632.91 12	4+		3081.11 19	$(7,8,9)^{-}$	3908.8 4	
1815.24 12	$(6)^{+}$	9.8 ns 5	3287.5 <i>3</i>	$(7,8^{+})$	4073.2 5	
2100.93 15	5-		3384.9 <i>3</i>		4170.4 3	$(7^{-}, 8^{-}, 9^{-})$
2146.15 12	$(7)^{-}$	115 ns 8	3404.5 4		4303.4 4	$(7^{-}, 8^{-}, 9^{-})$
2404.20 19	(6)-		3470.0 5	(7^{-})	4460.1 4	$(7^{-}, 8^{-}, 9^{-})$
2431.61 14	$(7)^{-}$		3536.46 24	$(7,8,9)^{-}$		
2770.2 3			3545.0 4			

[†] From least-squares adjustment to $E\gamma's$.

[‡] From Adopted Levels.

[#] From $\beta \gamma(t)$ and $\gamma \gamma(t)$ (1972Ke28).

β^{-} radiations

E(decay)	E(level)	Ι <i>β</i> -†	Log ft	Comments
$(5.0 \times 10^2 \ 3)$	4460.1	4.1 6	5.19 10	av E β =153 9
$(6.6 \times 10^2 \ 3)$	4303.4	2.7 4	5.78 9	av E β =211 10
$(7.9 \times 10^2 \ 3)$	4170.4	8.6 7	5.56 7	av Eβ=262 10
$(8.9 \times 10^2 \ 3)$	4073.2	1.9 4	6.39 11	av Eβ=300 10
$(1.05 \times 10^3 \ 3)$	3908.8	4.0 5	6.34 7	av E β =367 11
$(1.25 \times 10^3 \ 3)$	3707.90	3.8 7	6.65 9	av E β =451 11
$(1.39 \times 10^3 \ 3)$	3564.98	7.3 6	6.55 5	av E β =513 11
$(1.41 \times 10^3 \ 3)$	3545.0			E(decay): 1300 200 from $(1444\gamma)\beta$ coin (1990St13).
$(1.42 \times 10^3 \ 3)$	3536.46	6.5 7	6.63 6	av E β =525 11
				E(decay): 1540 90 from $(455\gamma)\beta$ coin (1990St13).
$(1.49 \times 10^3 \ 3)$	3470.0	1.9 3	7.24 8	av E β =554 11
$(1.55 \times 10^3 \ 3)$	3404.5	3.3 6	7.07 9	av E β =582 11
$(1.57 \times 10^3 \ 3)$	3384.9	3.4 6	7.08 9	av Eβ=591 11
$(1.67 \times 10^3 \ 3)$	3287.5	5.4 7	6.98 7	av Eβ=634 11
$(1.88 \times 10^3 \ 3)$	3081.11	3.6 14	7.36 17	av Eβ=726 12
_				E(decay): 1820 220 from $(935\gamma)\beta$ coin (1990St13).
$(2.08 \times 10^3 \ 3)$	2878.17	6.2 15	7.30 11	av E β =818 12
$(2.18 \times 10^3 \ 3)$	2781.88	6.9 9	7.34 6	av Eβ=861 12
$(2.19 \times 10^3 \ 3)$	2770.2	< 0.5	>8.5	av Eβ=867 12
$(2.53 \times 10^3 \ 3)$	2431.61	1.6 6	8.24 17	av E <i>β</i> =1022 <i>12</i>
$(2.55 \times 10^{3} \ddagger 3)$	2404.20	6.4 10	7.65 7	av Eβ=1035 12
				E(decay): 2470 400 from $(303\gamma)\beta$ coin (1990St13).

Continued on next page (footnotes at end of table)

$^{130}{\rm Sb}\,\beta^-$ decay (39.5 min) 1972Ke28 (continued)

β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(2.81×10 ³ 3)	2146.15	18 5	7.38 13	log <i>ft</i> =7.65 is too low for ΔJ=(2), $\Delta \pi$ =(No) transition. av Eβ=1154 <i>12</i> E(decay): 2700 <i>170</i> from (331γ)β coin (1990St13), 2900 <i>100</i> (1971Ki15), 3800 <i>300</i> (1972Ke28).

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

$\gamma(^{130}\text{Te})$

I γ normalization: I γ (793.4)=I γ (839.4)=100.

Eγ	$I_{\gamma}^{\dagger @}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α &	Comments
182.330 [#] 9	65 4	1815.24	(6)+	1632.91	4+	E2		0.2073	$\alpha(K) = 0.1649; \ \alpha(L) = 0.0339; \ \alpha(M) = 0.00692; \ \alpha(N+) = 0.00158 \ \alpha(K) \exp[-0.17 2; \ \alpha(L) \exp[-0.035 4]$
258.0 2	3.9 4	2404.20	(6)-	2146.15	(7)-	M1+E2	+0.21 6	0.052	$\alpha(K) \exp = 0.038$ 7
285.48 [#] 7	3.5 4	2431.61	$(7)^{-}$	2146.15	$(7)^{-}$	M1+E2		0.043	α (K)exp=0.040 8
303.3 2	5.8 6	2404.20	(6)-	2100.93	5-	M1(+E2)	+0.02 2	0.033	$\alpha(K) \exp = 0.028 6$
330.914 [#] 9	78 4	2146.15	(7)-	1815.24	(6)+	E1+M2	+0.070 6		α (K)exp=0.0070 <i>10</i> ; α (L)exp=0.0010 <i>2</i>
455.4 2	4.8 5	3536.46	(7,8,9)-	3081.11	(7,8,9)-	M1,E2			$\alpha(K) \exp[=0.011\ 2]$
462.5 4	0.8 2	4170.4	(7 ⁻ ,8 ⁻ ,9 ⁻)	3707.90					
468.0 1	18 <i>1</i>	2100.93	5-	1632.91	4+	E1(+M2)	+0.03 2		α (K)exp=0.0031 6
483.6 3	2.2 3	3564.98	$(7,8^{+})$	3081.11	$(7,8,9)^{-}$				
506.7 <i>3</i>	2.0 4	3384.9		2878.17	$(7,8,9)^{-}$				
595.5 3	1.0 2	4303.4	$(7^{-}, 8^{-}, 9^{-})$	3707.90					
626.7 3	2.8 3	3707.90	-	3081.11	$(7,8,9)^{-}$				
635.7 3	1.6 3	2781.88	(7^{-})	2146.15	(7)-				
^654.7 3	2.0 2	2526.46	$(\overline{a}, 0, 0) =$	0070 17	(7,0,0) =				
658.2 3	1./4	3536.46	(7,8,9)	28/8.1/	(7,8,9)				
669.2 3	1.1 2	27/10.2	(7-)	2100.93) 5-				
080.9 3	0.3 / 2.2 /	2/01.00	(7)	2100.95	$(7 \times 0)^{-}$				
732.0.1	2.2 4	3304.90 2070 17	$(7, 0)^{-}$	20/0.17	(7,0,9)	M1 E2			$\alpha(K) = 0.0024.5$
732.01	100 5	2676.17	(7,8,9)	2140.13 830.52	2+	F_2			$\alpha(K) \exp[-0.0024] 3$
820.8.3	181	3707.90	+	2878 17	$(780)^{-}$	L2			$u(\mathbf{K})exp=0.0021$ 5
839.52 [#] 6	100 5	839.52	2+	0.0	(7,0,7)	F2			$\alpha(K) = 0.0018$ 3
85574	163	3287.5	(7.8^{+})	2431.61	$(7)^{-}$	112			u(ii)exp=0.0010 5
883.3.4	1.2.3	3287.5	$(7,8^+)$	2404.20	$(6)^{-}$				
914.9 4	1.8 4	4460.1	$(7^{-}.8^{-}.9^{-})$	3545.0	(0)				
926.0.5	0.4 2	3707.90	(, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2781.88	(7^{-})				
934.9 2	19 1	3081.11	$(7,8,9)^{-}$	2146.15	$(7)^{-}$	M1,E2			$\alpha(K) \exp = 0.0020 \ 6$
992.1 4	1.9 4	4073.2		3081.11	$(7,8,9)^{-}$,			· · •
1000.2 4	2.3 5	3404.5		2404.20	(6)-				
1030.7 4	1.5 3	3908.8		2878.17	(7,8,9)-				
1075.5 5	0.4 2	4460.1	(7 ⁻ ,8 ⁻ ,9 ⁻)	3384.9					
1089.5 4	3.7 4	4170.4	(7 ⁻ ,8 ⁻ ,9 ⁻)	3081.11	$(7, 8, 9)^{-}$				

Continued on next page (footnotes at end of table)

			1	30 Sb β^- de	cay (39.5 min)	1972Ke28 (c
					γ ⁽¹³⁰ Te) (co	ontinued)
E_{γ}	$I_{\gamma}^{\dagger @}$	E _i (level)	J_i^π	\mathbf{E}_{f}	J_f^π	
^x 1096.5.5	0.8.2					
1134.2.5	0.4.2	3564.98	(7.8^{+})	2431.61	$(7)^{-}$	
1137.6 5	0.3 2	2770.2	(,,0)	1632.91	4+	
1141.4 4	2.0 4	3287.5	(7.8^{+})	2146.15	$(7)^{-}$	
^x 1146.2 5	0.6 2					
1239.0 5	1.8 <i>3</i>	3384.9		2146.15	$(7)^{-}$	
1258.5 5	1.0 2	3404.5		2146.15	(7)-	
1292.3 4	3.7 4	4170.4	$(7^{-}, 8^{-}, 9^{-})$	2878.17	$(7,8,9)^{-}$	
1368.7 5	1.1 2	3470.0	(7 ⁻)	2100.93	5-	
1419.3 5	1.2 2	3564.98	$(7,8^+)$	2146.15	$(7)^{-}$	
1443.7 5	2.5 3	3545.0		2100.93	5-	
1473.1 8	0.6 2	3287.5	$(7,8^+)$	1815.24	$(6)^+$	
^x 1488.4 8	0.6 2					
^x 1499.6 8	0.4 2					
1521.1 8	0.8 2	4303.4	$(7^{-}, 8^{-}, 9^{-})$	2781.88	(7 ⁻)	
1533.7 8	0.9 2	4303.4	$(7^{-}, 8^{-}, 9^{-})$	2770.2		
1561.6 8	0.6 2	3707.90		2146.15	(7)-	
1581.9 8	1.9 4	4460.1	$(7^{-}, 8^{-}, 9^{-})$	2878.17	$(7,8,9)^{-}$	
^x 1617.0 8	0.9 2					
^x 1626.6 8	0.6 2					
1655.6 8	0.8 2	3470.0	(7 ⁻)	1815.24	$(6)^+$	
1749.8 8	0.3 2	3564.98	$(7,8^{+})$	1815.24	$(6)^+$	
1762.6 5	2.5 3	3908.8		2146.15	$(7)^{-}$	
^x 1884.4 8	0.7 2					
^x 1948.0 8	1.2 2					
^x 1997.4 5	2.1 2					
2023.3 8	0.4 2	4170.4	(7 ⁻ ,8 ⁻ ,9 ⁻)	2146.15	$(7)^{-}$	

continued)

[†] $\Delta(I\gamma)$ are based on a general comment by 1972Ke28 that these are: 5% for I γ >15, 10% for I γ =2-15, 20% or 0.2 for I γ ≤2.

[±] From adopted gammas, consistent with $\alpha(K)\exp's$ in this dataset.

[#] From curved-crystal measurement (1979Bo26).

[@] Absolute intensity per 100 decays.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

¹³⁰Sb β^- decay (39.5 min) 1972Ke28

130 Sb β^- decay (39.5 min) 1972Ke28

