Adopted Levels, Gammas

		7	Гуре	Author	History Citation	Literature Cutoff Date
		Full E	Evaluation	Balraj Singh	NDS 93,33 (2001)	11-May-2001
$Q(\beta^{-}) = -417 \ 4;$ Note: Current e Additional infor Muonic atom ar Isotope shifts fr Antiprotonic ato	S(n)= valuation mation nd isot rom x-1 pms: 1	8419.4 9; S(p)=1 on has used the f n 1. ope shifts: 1989S ray data: 1970Me 998Lu05, 1993W	0013 22; Q following Q h02. 10. y03.	$p(\alpha) = -3763 \ 1$ precord -420	1 2012Wa38 4 8419 3 10016	21 –3758 <i>11</i> 1995Au04.
					¹³⁰ Te Levels	
				Cross F	Reference (XREF) Flags	3
		A 130 Sb β B 130 Sb β C 130 Te(γ D 130 Te(64)	 decay (3) decay (6) ,γ') ⁴Ni,Xγ) 	9.5 min) E 3 min) F G H	130 Te(n,n' γ) 130 Te(p,p'),(p,p' γ) 130 Te(d,d') 130 Te(α, α')	I Coulomb excitation J $^{238}U(^{12}C,F\gamma)$ K $^{239}Pu(n,F\gamma),^{241}Pu(n,F\gamma)$
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF			Comments
0.0	0.	>0.79×10 ²¹ y	ABCDEFGF	$\begin{array}{c} \text{II JK} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	=100 asurement (1933Ra02) 0.79×10^{21} y <i>10</i> (from g e is treated as a lower 1 Neutrinoless ββ decay: >1.44×10 ²³ y (at 90% 8A119,1994A149,1994A a an array of 20 tellurite grams. 2000A126 also f rst 2 ⁺ or excited 0 ⁺ sta Geochemical methods: (988Li11), 2.60×10 ²¹ y 1972Sr03), 2.03×10 ²¹ y 1972Sr03), 2.03×10 ²¹ y 56Ki02) and ≤1.00×10 ² 66Ri02), 0.97×10 ²¹ y <i>11</i> 56Ta02), 1.4×10 ²¹ y (19 2Be30, 1988Mi13, 1987 0Zd03, 1980Zd01, 1970 lation and analysis of β onal information 2.	by optical-spectroscopy method. eochemical method, 1996Ta04). The limit, as proposed by 2000A126. no evidence found by 2000A126 with confidence level). 2000A126 (also 125,1992A109) used bolometric method e crystals with a total mass of 6.8 found no evidence for neutrinoless decay tes in ¹³⁰ Xe. 0.79×10^{21} y <i>10</i> (1996Ta04), >1.25×10 ²¹ y 28 (1983Ki02,1983Ki03), 2.51×10 ²¹ y y 30 (1969A122), 2.2×10 ²¹ y 6 ¹ y <i>12</i> (1986Li10), 1.0×10^{21} y 3 <i>1</i> (1975He04), 0.82×10^{21} y 6 250In03,1949In03). See also 1993Be04, 7Be13, 1985HoZN, 1984Fi16, 1980Zd02, 0Ki21, 1969Va39, 1967Ge12, 1967Ki04. <i>2β</i> data: 2001Ej01, 1998K125.
839.494 17	2+	2.30 ps 5	ABCDEFGH	LIJK μ =+0. Q=-0 B(E2) ⁻ μ : $\gamma(\theta$ Cou Q: reo inter exci B(E2) ⁻ J ^π : L(1) T ^π : L(1)	58 10 (1989Ra17,1988I 15 10 (1989Ra17,1976) $\uparrow=0.295 6$,H) in Coul. ex. (1988E lomb excitation. rientation method in Co rference term (1976Bo1 tation. $\uparrow:$ from Coul. ex. $p,p')=2; E2 \gamma \text{ to } 0^+.$ from P(E2) in Coul. ex.	Du10) Bo12) Du10). See other measurements in Dul. ex. for positive sign of the 2). See other details in Coulomb
1588.256 <i>24</i> 1632.997 <i>22</i>	$2^+ 4^+$		BCDEF H AB DEF	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	γ to 0 ⁺ . γ to 2 ⁺ ; E1 γ from 5 ⁻	

Continued on next page (footnotes at end of table)

¹³⁰Te Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
1815.336 25	$(6)^{+}$	9.8 ns 5	AB DEF JK	J^{π} : E2 γ to 4 ⁺ , no γ to 2 ⁺ ; systematics of even Te isotopes.
1885.700 25 1964.76 4 1981.546 23 2101.25 3 2138.63 3 2146.41 4	2^+ (0 ⁺) 4^+ 5^- 3^+ (7) ⁻	115 ns 8	BCDEFG CDE B DEF H AB DEF H DE A DEF JK	$T_{1/2}: \gamma\gamma(t) \text{ in } 39.5\text{-min }^{130}\text{Sb decay.}$ $J^{\pi}: E2 \gamma \text{ to } 0^{+}.$ $J^{\pi}: \gamma(\theta) \text{ isotropic in } (n,n'\gamma).$ $J^{\pi}: L(p,p')=4; \gamma(\theta) \text{ and } \gamma(\text{lin pol) in } (n,n'\gamma).$ $J^{\pi}: L(p,p')=5; \gamma(\theta) \text{ and } \gamma(\text{lin pol) in } (n,n'\gamma).$ $J^{\pi}: M1+E2 \gamma' \text{ s to } 2^{+}, 4^{+}.$ $J^{\pi}: \log ft=7.4 \text{ from from } (8^{-}); E1 \gamma \text{ to } (6)^{+}.$ $T_{1/2}: \beta\gamma(t) \text{ in } 39.5\text{-min }^{130}\text{Sb decay.}$
2190.013 23 2282.593 25	(2^{+})		EF	J^{*} : (E2) γ to 0 ⁺ from $\gamma(\theta)$, $\gamma(\ln \text{ pol})$ in (n, 1 $\gamma)$. J^{π} : (E2) γ to 0 ⁺ from $\gamma(\theta)$ and $\gamma(\ln \text{ pol})$ in (n, 1 $\gamma)$.
2300.22 4	(2 ⁺)		EFG	J^{π} : (E2) γ to 0^+ from $\gamma(\theta)$ in $(n,n'\gamma)$.
2330.74 <i>4</i> 2404.65 <i>4</i>	(4^+) (6) ⁻		B DEF A DE	J^{π} : log <i>ft</i> =7.2 from (5) ⁺ ; γ to 2 ⁺ ; $\gamma(\theta)$ in (n,n' γ) rules out J=3. J^{π} : M1+E2 γ 's to 5 ⁻ and (7) ⁻ . But log <i>ft</i> =7.65 from (8 ⁻) is inconsistent with (6) ⁻ .
2418? 10	‡		F	
2432.08 7 2435.59 4 2449.48 4	$(7)^{-}$ 4 ⁻ 4 ⁺		A DE DE B EF h	J^{π} : log <i>ft</i> =8.2 from (8 ⁻); M1+E2 γ to (7) ⁻ . J^{π} : $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in (n,n' γ). J^{π} : $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in (n,n' γ).
2466.89 <i>4</i> 2527.06 <i>3</i> 2575.2? <i>4</i>	$(2^+)^{\ddagger}$ 3 ⁻		EFGh EF B	J^{π} : (E2) γ to 0 ⁺ from $\gamma(\theta)$ in $(n,n'\gamma)$. J^{π} : $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(n,n'\gamma)$. J^{π} : γ to 4 ⁺ .
2581.15 5	$(2^+)^{\ddagger}$		EFg	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
2607.33 5	1‡		C EF	J^{π} : γ to 0^+ ; $\gamma(\theta)$ in $(n,n'\gamma)$ rules out J=2.
2648.57 22	(8 ⁺)		D JK	J^{π} : γ 's to 6 ⁺ and 7 ⁻ ; systematics of even-even Te and Xe nuclides in this mass region.
2648.6+x	(10 ⁺)	1.90 μs 8	D JK	J ^π : systematics, probable $\nu h_{11/2}^{-2}$ configuration in N=78,80 and Z=52,54 nuclides. T _{1/2} : from timing of 182γ in ²³⁹ Pu(n,Fγ) (2001Ge07). Other: 4.2 μs 9 (from delayed γ rays in (⁶⁴ Ni,Xγ),1998Zh09). E(level): x<25 keV (2001Ge07). Other: x<90 keV (1998Zh09).
2689.12 5 2714.97? 5 2719.49 7 2729.5 10	1 [‡] (4 ⁻) (5 ⁺) 3 ⁻		C EF E E EFGHi	$J^{\pi}: \gamma \text{ to } 0^+; \gamma(\theta) \text{ in } (n,n'\gamma) \text{ rules out J=2.} J^{\pi}: \gamma(\theta) \text{ and } \gamma(\text{lin pol}) \text{ in } (n,n'\gamma). J^{\pi}: \gamma(\theta) \text{ in } (n,n'\gamma). B(E3)\uparrow=0.061 + 20-35 \beta_3=0.073 6 XREF: E(2770). \beta_3: from (p,p'). Others: 0.10 (n,n'); 0.06 (\alpha, \alpha'). J^{\pi}: L(p,p')=L(\alpha, \alpha')=3. E(level): from (p,p'). B(E3)\uparrow: from Coul. ex.$
2736.31 5	(4 ⁺)		ΒE	J^{π} : γ 's to 2 ⁺ and (6) ⁺ favor $J^{\pi}=(4^+)$; but $\gamma(\theta)$ in $(n,n'\gamma)$ consistent with J=(5).
2743.14? 4	$(2^{+} 2)$		CE	J^{π} : γ to 0^+ ; $\gamma(\theta)$ in $(n,n'\gamma)$ rules out J=2.
2765.26 22	(2,3) (4^+)		В	J^{π} : γ' s to 2 ⁺ and (6) ⁺ .
2770.84 8	(•)		A E	
2782.12 12	(7 ⁻)		A E	J^{π} : log <i>ft</i> =7.3 from (8 ⁻); γ to 5 ⁻ .
2789.26? 5	$(156)^+$		E	I_{π} , log $f_{\pi} = 5.8$ from $(5)^{+}$
2878.43 10	$(4,3,0)^{-1}$ $(7,8,9)^{-1}$		ь <u>г</u> А D	J^{π} : log $ft=7.3$ from (8^{-}) : M1.E2 γ to $(7)^{-}$
2950 20	(1,0,2)		FGH	E(level): from (p,p'). $T_{T} = (-\pi^2)^{-1} (4)^{-1}$
3081.38 15	(7,8,9)-		A D J	$J^{+}: L=(p,p) = (4).$ $J^{\pi}: \log ft = 7.4 \text{ from } (8^{-}); M1, E2 \gamma \text{ to } (7)^{-}.$

Continued on next page (footnotes at end of table)

¹³⁰Te Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	Х	REF	Comments
3155.03? 10 3180 20 3279 20				E F H F	E(level): from (α, α') .
3287.90 <i>23</i> 3360 <i>10</i> 3385.1 <i>3</i>	(7,8 ⁺) 3 ⁻		A A	FH	J^{π} : log <i>ft</i> =7.0 from (8 ⁻); γ to (6) ⁺ . J^{π} : L(p,p')=3.
3404.9 4 3413.1 3 3470.2 5 3536.74 21 3545.2 4 3565.26 20	(4,5,6) (7^{-}) $(7,8,9)^{-}$ $(7,8^{+})$		A B A A A A		J ^{π} : log <i>ft</i> =5.9 from (5) ⁺ . J ^{π} : log <i>ft</i> =7.2 from (8 ⁻); γ to 5 ⁻ . J ^{π} : log <i>ft</i> =6.6 from (8 ⁻); M1,E2 γ to π = J ^{π} : log <i>ft</i> =6.5 from (8 ⁻); γ to (6) ⁺ .
3567.7 3 3642 20 3708.17 19 3791.4? 11 3909.1 4 3930 20 3995 20	(1,2)		C A A	F F h J F F	XREF: F(3570).
4073.5 <i>5</i> 4170.68 <i>25</i> 4240 42 <i>15</i>	(7-,8-,9-)		A A		J^{π} : log <i>ft</i> =5.6 from (8 ⁻).
4249.4? 15 4303.7 3 4375.4? 18 4384 20	(7 ⁻ ,8 ⁻ ,9 ⁻)	261 ns <i>33</i>	A	J	J ^{π} : log <i>ft</i> =5.8 from (8 ⁻). T _{1/2} : from γ (t) (1998HoZP), assumed as T _{1/2} by the evaluator.
4384 20 4446 20 4460.3 4	@ (7 ⁻ ,8 ⁻ ,9 ⁻)		A	F	J^{π} : log <i>ft</i> =5.2 from (8 ⁻).
4497 20 4531.5 4 4559 20	(1,2) #		c	F	
4597 20 4667 20	# #			F F	
4714? 20 4748? 20	#			F	
4793 20 4796 20 4833? 20	# &			F F F	
4856 20 4891 20	& #			F F	
4950 20 4983? 20 7538 2 22	#	10 fc 5	C	F F	I^{π} dipole of to 0^+
7636.5 5	1 1 ⁻	7.6 fs 40	c		T _{1/2} : from Γ _γ =0.24 eV 6 in (γ,γ'). Γ _{γ0} =0.05 eV 1. J ^π : E1 γ to 0 ⁺ . T _{1/2} : from Γ _γ =0.06 eV 3 in (γ,γ'). Γ _{γ0} =0.030 eV 10.

- [†] From least-squares adjustment to $E\gamma's$. [‡] (1⁺,2⁺) from on-resonance $p(\theta)$ in IAR (1971Hi02). [#] (3⁻,4⁻) from on-resonance $p(\theta)$ in IAR (1971Hi02). [@] (3⁻,4⁻,5⁻) from on-resonance $p(\theta)$ in IAR (1971Hi02). [&] (1⁻,2⁻) from on-resonance $p(\theta)$ in IAR (1971Hi02).

$\gamma(^{130}\text{Te})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α [@]	$I_{(\gamma+ce)}$	Comments
839 494	2^{+}	839 49 2	100	0.0 0^+	E2				$B(E^2)(W_{11}) = 15 \pm 3$
1588.256	$\frac{2}{2^{+}}$	748.76.2	100 14	839.494 2+	M1+E2	+0.65.15			D(D2)((0,a)) = 15.175
10001200	-	1588.19.8	1.6.3	$0.0 0^+$	E2	10100 10			
1632.997	4+	793.53 2	100	839.494 2+	E2				
1815.336	$(6)^{+}$	182.335 11	100	1632.997 4+	E2		0.207		$\alpha(K) = 0.1647; \ \alpha(L) = 0.0339; \ \alpha(M) = 0.00691;$
									$\alpha(N+)=0.00158$ B(F2)(Wu)=6.1.3
1885.700	2^{+}	1046.21.2	100 14	839.494 2+	M1+E2	-0.175 10			D(D2)((0,a)=0.13
10001/00	-	1885.69 18	2.0 4	$0.0 0^+$	E2	01170 10			
1964.76	(0^{+})	1125.26 3	100	839.494 2+					
1981.546	4 ⁺	348.58 2	100 10	1632.997 4+	M1+E2	-0.12 3	0.0234		
		1142.02 2	70 9	839.494 2+	E2				
2101.25	5-	468.27 2	100	1632.997 4+	E1(+M2)	+0.03 2			
2138.63	3+	505.63 <i>3</i>	37 4	1632.997 4+	M1+E2	+1.2 5			
		550.36 <i>3</i>	100 10	1588.256 2+	M1+E2	+2.4 2			
		1299.16 <i>3</i>	94 <i>13</i>	839.494 2+	M1+E2	+0.32 2			I_{γ} : other: 200 in (⁶⁴ Ni,X γ).
2146.41	$(7)^{-}$	(46)		2101.25 5-				≈0.04	
		330.94 5	100	1815.336 (6)+	E1+M2	+0.070 6			$B(E1)(W.u.)=6.3\times10^{-8}; B(M2)(W.u.)=0.013 3$
2190.615	(2^{+})	1351.11 <i>3</i>	94 <i>13</i>	839.494 2+	(M1+E2)	-0.27 2			
		2190.60 <i>3</i>	100 15	$0.0 0^+$	(E2)				
2282.593	(2^{+})	1443.09 2	100 15	839.494 2+	(M1+E2)	-0.10 2			
		2282.60 7	21 3	$0.0 0^+$	(E2)				
2300.22	(2^{+})	1460.72 <i>3</i>	100 14	839.494 2+	(M1+E2)	$-0.20\ 2$			
		2300.0 3	4.5 7	$0.0 0^+$	(E2)				
2330.74	(4^{+})	697.73 <i>3</i>	100 10	1632.997 4+	(M1+E2)				δ : 1.12 8 or -0.08 4.
		1491.24 7	29 5	839.494 2+	(E2)				
2404.65	(6)-	258.21 <i>3</i>	100 10	2146.41 (7) ⁻	M1+E2	+0.21 6	0.0516 4		$\alpha(K)=0.04444\ 21;\ \alpha(L)=0.00571\ 9;\ \alpha(M)=0.00114;$ $\alpha(N+)=0.00027$
		303.43 <i>3</i>	100 10	2101.25 5-	M1(+E2)	+0.02 2	0.0335		$\alpha(K)=0.02896; \alpha(L)=0.00364; \alpha(M)=0.00072; \alpha(N+)=0.00017$
2432.08	$(7)^{-}$	285.61 7	35 4	2146.41 (7) ⁻	M1+E2		0.043 2		
		331.0 <i>1</i>	100 10	2101.25 5-					γ from (⁶⁴ Ni,X γ) only.
2435.59	4-	334.34 2	100	2101.25 5-	M1+E2	-0.052 7	0.0261		$\alpha(K)=0.02253; \alpha(L)=0.00283; \alpha(M)=0.00056; \alpha(N+)=0.00013$
2449.48	4+	816.48 <i>3</i> 861.6 <i>4</i>	100 8	$1632.997 \ 4^+ \ 1588.256 \ 2^+$	M1+E2	-0.21 2			
2466.89	(2^{+})	1627.38 3	100 14	839.494 2+	(M1+E2)				$\delta = -0.48 \ 4 \text{ or } 1/\delta = -0.02 \ 3.$
		2466.94 18	11 2	$0.0 0^+$	(E2)				· · · · · · · · ·
2527.06	3-	894 06 14	437	1632 997 4+	× /				
2527.00	5	1687 56 2	100.16	839 494 2+	E1(+M2)	+0.030.6			
2575.2?		942.2 4	100 10	1632.997 4+	E1(1112)	10.050 0			

4

From ENSDF

$\gamma(^{130}\text{Te})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	Comments
2581.15	(2+)	992.95 13	12.1 19	1588.256	2+			
		1741.64 4	100 15	839.494	2+	D+Q	+0.18 2	
2607.33	1	1767.81 8	61 8	839.494	2+			
2640 55	(0±)	2607.31 6	100 14	0.0	0+			
2648.57	(81)	502.0 3	75 8	2146.41	(7)			
2690 12	1	833.4 3	100 10	1815.330	(6)'			
2089.12	(4^{-})	2689.09 3	100	0.0	0· 5-	(M1 + E2)	10 12 2	
2710.40	(4)	015.72 5	22.6	2101.23	3 4+	$(\mathbf{M1+E2})$	+0.42 2	
2/17.47	(\mathbf{J})	904 04 10	100 16	1901.040	$(6)^+$			
		1086 54 9	74 11	1632 997	$(0) = 4^+$	(M1 + F2)		$\delta = -0.214 \text{ or } -2.6$
2720 5	2-	1000.54 >	/ + 11	020 404	- 2+	(1411+122)		E : tentetine :: from Coul en
2726.21	(4^{+})	1890	12 5	839.494 2220.74	(4^{\pm})			E_{γ} : tentative γ from Coul. ex.
2750.51	(4)	403.2 2	100 10	2330.74	$(4)^+$			
		1103 29 6	03.0	1632 007	(0) 4^+			
		1896.9.8	33.8	839 494	2+			
2743 14?	1	2743 11 4	100	0.0	$\tilde{0}^{+}$			
2744.97	$(2^+,3)$	859.30 4	91 73	1885.700	2^{+}			
,,,	(,0)	1112.01 9	29 4	1632.997	$\frac{1}{4^{+}}$			
		1905.43 4	100 14	839.494	2+			
2765.26	(4^{+})	949.8 <i>4</i>	46 9	1815.336	$(6)^{+}$			
		1131.9 4	59 14	1632.997	4+			
		1177.3 4	100 10	1588.256	2^{+}			
		1925.7 <mark>&</mark> 8	189	839.494	2^{+}			
2770.84		669.60 7	100 20	2101.25	5-			
		1137.6 <mark>&</mark> 5	27 20	1632 997	4^{+}			
2782.12	(7^{-})	635.7.3	25.5	2146.41	$(7)^{-}$			
2702112	(,)	680.85 13	100 10	2101.25	5-			
2789.26?		1156.21 14	25 4	1632.997	4^{+}			
		1949.76 5	100 14	839.494	2+			
2833.35	$(4,5,6)^+$	502.6 <i>3</i>	6.3 13	2330.74	(4^{+})			
		1018.01 5	100 5	1815.336	$(6)^{+}$			
		1200.0 4	12.0 12	1632.997	4^{+}			
2878.43	$(7, 8, 9)^{-}$	732.0 1	100	2146.41	$(7)^{-}$	M1,E2		
3081.38	$(7,8,9)^{-}$	934.9 2	100	2146.41	$(7)^{-}$	M1,E2		
3155.03?		1173.25 17	86 13	1981.546	4+			
2207 22		1522.14 12	100 15	1632.997	4+			
3287.90	(7,8+)	855.7 4	80 15	2432.08	$(7)^{-}$			
		883.3 4	60 15	2404.65	$(6)^{-}$			
		1141.4 4	100 20	2146.41	$(7)^{+}$			
		14/3.1 ð	30 10	1815.556	(0)			

S

$\gamma(^{130}\text{Te})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]
3385.1		506.7 <i>3</i>	100 20	2878.43	$(7,8,9)^{-}$	
		1239.0 5	90 15	2146.41	$(7)^{-}$	
3404.9		1000.2 4	100 20	2404.65	(6)-	
		1258.5 5	44 9	2146.41	$(7)^{-}$	
3413.1	(4,5,6)	647.7 <i>3</i>	100 10	2765.26	(4^{+})	
		1598.0 5	54 6	1815.336	$(6)^+$	
3470.2	(7^{-})	1368.7 5	100 20	2101.25	5-	
		1655.6 8	73 20	1815.336	$(6)^{+}$	
3536.74	$(7,8,9)^{-}$	455.4 2	100 10	3081.38	$(7,8,9)^{-}$	M1,E2
		658.2 <i>3</i>	35 8	2878.43	$(7,8,9)^{-}$	
3545.2		1443.7 <i>5</i>	100	2101.25	5-	
3565.26	$(7,8^{+})$	483.6 <i>3</i>	69 10	3081.38	$(7,8,9)^{-}$	
		686.6 <i>3</i>	100 10	2878.43	$(7, 8, 9)^{-}$	
		1134.2 5	13 6	2432.08	$(7)^{-}$	
		1419.3 5	38 6	2146.41	$(7)^{-}$	
		1749.8 8	96	1815.336	$(6)^{+}$	
3567.7	(1.2)	2728 <mark>&</mark>	<25	839.494	2^{+}	
		3567.6 <i>3</i>	100	0.0	0^{+}	
3708.17		626.7 <i>3</i>	100 10	3081.38	$(7,8,9)^{-}$	
		829.8 <i>3</i>	64 14	2878.43	$(7,8,9)^{-}$	
		926.0 5	14 7	2782.12	(7^{-})	
		1561.68	21 7	2146.41	$(7)^{-}$	
3791.4?		710		3081.38	$(7,8,9)^{-}$	
3909.1		1030.7 4	60 12	2878.43	$(7,8,9)^{-}$	
		1762.6 5	100 10	2146.41	$(7)^{-}$	
4073.5		992.1 <i>4</i>	100	3081.38	$(7,8,9)^{-}$	
4170.68	$(7^{-}, 8^{-}, 9^{-})$	462.5 4	22 5	3708.17		
		1089.5 4	100 10	3081.38	$(7,8,9)^{-}$	
		1292.3 4	100 10	2878.43	$(7,8,9)^{-}$	
		2023.3 8	11 5	2146.41	$(7)^{-}$	
4249.4?		458		3791.4?		
4303.7	$(7^{-}, 8^{-}, 9^{-})$	595.5 <i>3</i>	100 20	3708.17		
		1521.1 8	80 20	2782.12	(7^{-})	
		1533.7 8	90 20	2770.84		
4375.4?		126		4249.4?		
4460.3	(7 ⁻ ,8 ⁻ ,9 ⁻)	914.9 <i>4</i>	95 20	3545.2		
		1075.5 5	21 10	3385.1		
		1581.9 8	100 20	2878.43	$(7, 8, 9)^{-}$	
4531.5	(1,2)	3691 <mark>&</mark>	<10	839.494	2+	
		4531.4 <i>4</i>	100	0.0	0^{+}	
7538.2	1	4856 6	11 4	2689.12	1	

6

γ (¹³⁰Te) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	Comments
7538.2	1	4932 6	11 4	2607.33	1		
		5344 6	15 <i>3</i>	2190.615	(2^{+})		
		5571 6	11 3	1964.76	(0^{+})		
		5650 6	10 <i>3</i>	1885.700	2+		
		5950 6	100 16	1588.256	2^{+}	D [#]	
		6698 6	90 8	839.494	2+	D [#]	
		7538 6	80 16	0.0	0^{+}	D [#]	
7636.5	1-	5749		1885.700	2+		
		6049		1588.256	2^{+}		
		6797		839.494	2^{+}		
		7637		0.0	0^+	E1 [#]	$B(E1)(W.u.)=3.9\times10^{-5}$ 13

[†] Generally from $(n,n'\gamma)$ where most precise and complete data are available. In a few cases weighted averages were taken where common levels were populated. [‡] From $\gamma(\theta)$ and $\gamma(\ln \text{ pol})$ in $(n,n'\gamma)$, unless otherwise stated.

[#] From $\gamma(\theta)$ and/or $\gamma($ lin pol) in (γ, γ') .

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Placement of transition in the level scheme is uncertain.

-

Adopted Levels, Gammas Legend Level Scheme Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) 7636.5 7.6 fs 40 7538.2 1 1.9 fs 5 6,5,6 1,5,6 1,8,6 0.1951 (1,2) 4531.5 (7⁻,8⁻,9⁻) ŝ 15.33 15.33 29.51,90 4460.3 4375.4 261 ns 33 20-33 129-311 1089-311 1089-311 (7⁻,8⁻,9⁻) 4303.7 1 N \$50 _4<u>2</u>4<u>9</u>.<u>4</u> _₹_ -| -(7⁻,8⁻,9⁻) 4170.68 -1-4073.5 ï 20 3909.1 _3<u>791.4</u> -!-¥ . _ _ _ _ _ _ , <u>, ,</u> 3708.17 (1,2) 3567.7 1443.> 2 235 4 M $(7, 8^+)$ 3565.26 55 1 I 3545.2 ¥ (7,8,9) 3536.74 Т 1 3385.1 1 (7,8,9)i. 3081.38 (7,8,9) 2878.43 I. + (7⁻) 2782.12 ¥ 2770.84 -1-2689.12 1 ¥ Ĵ. T 2607.33 1 ÷. $(7)^{-}$ 2432.08 (2^+) | _|_ 2190.615 (7) 2146.41 1 115 ns 8 5-2101.25 (0^{+}) T 1964.76 ŧ 2^{+} 1885.700 ¥ $(6)^+$ 1815.336 9.8 ns 5 1 2+ 1588.256 2^{+} 839.494 2.30 ps 5 0^{+} 0.0 >0.79×10²¹ y

¹³⁰₅₂Te₇₈

8

Adopted Levels, Gammas

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 γ Decay (Uncertain)

¹³⁰₅₂Te₇₈

Legend

Intensities: Relative photon branching from each level Level Scheme (continued)

۲ γ Decay (Uncertain)

 $^{130}_{52}\mathrm{Te}_{78}$

10