¹³⁰Te(n,n'γ) **1988Be52**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 93, 33 (2001)	11-May-2001

Includes (n,n) and (n,n').

1988Be52 (also 1980De07): E=reactor fast neutrons, enriched target. Measured E γ , I γ , $\gamma(\theta)$, $\gamma(\text{lin pol})$.

1981Ko15 (also 1973Ko29): (n,n') E=0.85-1.2 MeV. Measured σ , optical-model analysis.

(n,n) experiments:

1986Ko06: (n,n) E=0.00057 eV, 1.26 eV, 5.2 eV. Measured neutron scattering lengths.

1988Mu16: (n,n) E \approx 0.25 MeV. Measured $\sigma(\theta)$, optical-model analysis.

1993Mi06: (n,n) E<300 keV. Measured $\sigma(\theta)$.

¹³⁰Te Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	0^{+}	
839.494 17	2+	
1588.259 24	2+	
1632.999 22	4+	
1815.37 <i>3</i>	$(6)^{+}$	
1885.702 25	2+	
1964.76 <i>4</i>	0^{+}	
1981.550 23	4+	
2101.26 3	5-	
2138.64 <i>3</i>	3+	
2146.43 4	$(7)^{-}$	
2190.616 23	2+	
2282.595 25	2+	
2300.22 4	(2^{+})	
2330.73 4	(4^{+})	
2404.66 4	6-	
2432.10 6	$(7)^{-}$	
2435.60 4	4-	
2449.48 <i>4</i>	4+	
2466.89 4	2^{+}	
2527.07 3	3-	
2581.15 5	(2^{+})	
2607.33 5	1	
2689.12 5	1	
2714.98? 5	4-	
2719.50? 7	(5^{+})	120
2736.35 5	(5)	J^{π} : disagrees with $J^{\pi} = (4^+)$ from 6.3-min ¹³⁰ Sb decay.
2743.14? 4	1	
2744.98 4	$(2^+,3)$	
2770	(3 ⁻)	$\beta_3 = 0.10 \ (1988 \text{Wa05})$ E(level): level from (n,n') (1988 Wa05).
2770.86 8	(6)	
2782.11 14	(7 ⁻)	J^{π} : 5 ⁻ proposed by 1988Be52 is unlikely due to β feeding of this level from (8 ⁻).
2789.26? 5	$(2^+,3)$	
2833.38 6 3155 032 10	$(5^+, 6^+)$	

[†] From least-squares adjustment to $E\gamma's$.

[±] based on $\gamma(\theta)$, $\gamma($ lin pol), level population data, and statistical model calculation.

¹⁹⁸⁸Wa05: (n,n') E=14.1 MeV. Measured $\sigma(\theta)$, deduced β_3 .

						¹³⁰ Te(n,n' γ)	1988Be52	(continued)	
							$\gamma(^{130}\text{Te})$		
E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{a}	Comments
182.36 2 ^x 188.13 16 ^x 201.18 13 ^x 204.81 16	5.1 6 0.080 12 0.106 14 0.072 11	1815.37	(6)+	1632.999	4+				
258.21 <i>3</i>	0.55 6	2404.66	6-	2146.43	(7)-	M1+E2 [@]	+0.21 6	0.0516 4	α (K)=0.04444 21; α (L)=0.00571 9; α (M)=0.00114; α (N+)=0.00027 A ₂ =-0.43 8, A ₄ =-0.02 10.
285.67 <i>4</i> ^x 288.79 <i>15</i>	0.59 7 0.056 14	2432.10	(7) ⁻	2146.43	(7) ⁻	M1+E2 [@]		0.043 2	$A_2 = -0.16 \ 6, \ A_4 = 0.00 \ 8.$
303.43 3	0.60 7	2404.66	6-	2101.26	5-	M1(+E2) [@]	+0.02 2	0.0335	α (K)=0.02896; α (L)=0.00364; α (M)=0.00072; α (N+)=0.00017 A ₂ =-0.21 4, A ₄ =-0.08 6.
331.05 2	2.2 3	2146.43	(7)-	1815.37	$(6)^{+}$	E1+M2 [@]	+0.070 6		$A_2 = -0.110 \ 8, \ A_4 = +0.024 \ 13.$
334.34 2	2.1 3	2435.60	4-	2101.26	5-	M1+E2 [#]	-0.052 7	0.0261	$\alpha(K)=0.02253; \ \alpha(L)=0.00283; \ \alpha(M)=0.00056; \ \alpha(N+)=0.00013 \ A_2=-0.059 \ 8, \ A_4=+0.006 \ 13. \ POL=+0.68 \ 14.$
348.58 2	2.4 3	1981.550	4+	1632.999	4+	M1+E2 [#]	-0.12 3	0.0234	α (K)=0.02023; α (L)=0.00254; α (M)= 0.0005; α (N+)=0.00012 A ₂ =+0.251 <i>J</i> 5, A ₄ =-0.014 <i>2J</i> , POL=+2.9 + <i>JJ</i> -7.
^x 359.24 17	0.12 2								
468.27 2	8.1 10	2101.26	5-	1632.999	4+	E1(+M2) [#]	+0.03 2		$A_2 = -0.206 \ 3, \ A_4 = -0.023 \ 6. \ POL = +1.9 \ +3-2.$
505.63 <i>3</i> *521.56 <i>5</i> *535.50 <i>4</i>	0.48 6 0.31 4 0.40 10	2138.64	3+	1632.999	4+	M1+E2	+1.2 5		$A_2 = -0.58 \ 3, \ A_4 = 0.05 \ 3.$ $A_2 = -0.22 \ 4, \ A_4 = -0.08 \ 7.$ $A_2 = +0.45 \ 2, \ A_4 = +0.02 \ 2.$
550.36 <i>3</i>	1.27 16	2138.64	3+	1588.259	2+	M1+E2 [#]	+2.4 2		$A_2 = +0.455 \ 14, A_4 = +0.072 \ 21. \text{ POL} = +0.9 + 5 - 4.$
613.72 <i>3</i> ^x 647.64 <i>6</i> ^x 658.12 <i>5</i>	0.91 <i>12</i> 0.46 6 0.39 5	2714.98?	4-	2101.26	5-	M1+E2 [#]	+0.42 2		$A_2 = -0.52$ 2, $A_4 = -0.01$ 3. POL=+1.2 +12-7. $A_2 = +0.24$ 3, $A_4 = -0.14$ 4. $A_2 = +0.35$ 3, $A_4 = -0.04$ 5.
669.60 7 680.85 <i>13</i> 697.73 <i>3</i>	0.20 <i>3</i> 0.15 <i>2</i> 1.11 <i>16</i>	2770.86 2782.11 2330.73	(6) (7 ⁻) (4 ⁺)	2101.26 2101.26 1632.999	5 ⁻ 5 ⁻ 4 ⁺	D+Q (M1+E2)	+0.15 2		$A_2 = -0.01 \ 3, A_4 = +0.06 \ 5.$ $A_2 = +0.29 \ 5, A_4 = -0.18 \ 8.$ $A_2 = +0.27 \ 2, A_4 = -0.04 \ 3.$
x732 38 17	0.067.12								δ : +1.12 8 or -0.08 4.
738.1 2	0.061 11	2719.50?	(5 ⁺)	1981.550	4+				
748.76 2	11.2 16	1588.259	2+	839.494	2+	M1+E2 [#]	+0.65 15		A ₂ =+0.290 6, A ₄ =-0.018 7. POL=+0.80 9.
793.53 2	25 4	1632.999	4+	839.494	2+	E2 [@]			$A_2 = +0.2425, A_4 = -0.0627.$
816.48 <i>3</i>	1.12 16	2449.48	4+	1632.999	4+	M1+E2 [#]	-0.21 2		A ₂ =+0.190 6, A ₄ =-0.011 10. POL=+2.6 +40-13.
839.49 2 ^x 853.54 6	100 <i>3</i> 0.16 <i>6</i>	839.494	2+	0.0	0^+	E2 [@]			$A_2 = +0.204 5, A_4 = -0.082 7.$
859.30 4	0.51 7	2744.98	$(2^+, 3)$	1885.702	2^{+}				$A_2 = -0.20 2, A_4 = +0.01 3.$

ы

 $^{130}_{52} Te_{78}\text{-}2$

L

					13	³⁰ Te(n,n' γ)	1988Be52 (continued)
						$\gamma(^{130}$	Te) (continue	<u>d)</u>
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	Comments
^x 888.03 <i>11</i> 894.06 ^b <i>14</i> 904.04 <i>10</i> 921.01 <i>5</i>	0.13 2 0.082 <i>13</i> 0.19 <i>3</i> 0.36 <i>5</i>	2527.07 2719.50? 2736.35	3 ⁻ (5 ⁺) (5)	1632.999 1815.37 1815.37	4^+ (6) ⁺ (6) ⁺	D+Q	+0.20 2	A ₂ =-0.142 <i>14</i> , A ₄ =-0.005 <i>22</i> .
x942.07 3 x986.52 3 992.95 13	0.64 9 0.23 <i>3</i> 0.091 <i>14</i>	2581.15	(2 ⁺)	1588.259	2+			$A_2 = -0.056 \ 18, \ A_4 = -0.032 \ 12.$ $A_2 = -0.02 \ 2, \ A_4 = +0.01 \ 3.$
1002.48 y 1018.01 5 x1022.41 11 x1030.94 & 13	0.13 2 0.27 4 0.071 12 0.14 2	2833.38	(5+,6+)	1815.37	(6)+			$A_2 = -0.17 \ 3, \ A_4 = -0.07 \ 4.$
1046.21 2 *1053.71 7 *1066.24 15 *1070.47 17 *1075.84 14	5.9 8 0.27 4 0.091 14 0.085 13 0.081 13	1885.702	2+	839.494	2+	M1+E2 [#]	-0.175 10	$A_2 = +0.072 5, A_4 = -0.021 7. POL = +1.9 + 6-3.$ $A_2 = +0.30 3, A_4 = -0.10 5.$
1086.54 9	0.14 2	2719.50?	(5 ⁺)	1632.999	4+	(M1+E2)		$A_2 = -0.54 \ 13, A_4 = 0.04 \ 18.$ δ : -0.21 11 or -2.6 +7-10.
x1097.26 5 x1100.60 4 1103.29 6 1112.01 9	0.20 3 0.56 8 0.12 2 0.16 2	2736.35 2744.98	(5) $(2^+,3)$	1632.999 1632.999	4+ 4+			
x1115.03 5 1125.26 3 x1135.36 6	0.25 <i>4</i> 1.09 <i>15</i> 0.19 <i>3</i>	1964.76	0+	839.494	2+			$A_2 = -0.14 \ 4, \ A_4 = 0.00 \ 6.$ $A_2 = -0.009 \ 10, \ A_4 = -0.010 \ 16. \ POL = +1.1 \ +15-7.$
1142.02 2 1156.21 <i>14</i>	1.9 <i>3</i> 0.093 <i>15</i>	1981.550 2789.26?	4 ⁺ (2 ⁺ ,3)	839.494 1632.999	2^+ 4^+	E2		$A_2 = +0.318 6, A_4 = -0.055 8.$
^{11/3.25} 17 ^x 1178.24 5 ^x 1182.45 9 ^x 1193.54 14 ^x 1219.05 14	0.112 17 0.18 3 0.099 15 0.085 13 0.078 12	3155.03?		1981.550	4.			$A_2 = -0.01 \ 4, \ A_4 = -0.01 \ 6.$
x1222.25 18 x1231.92 13 x1243 55 18	0.074 12 0.15 2 0.076 12							$A_2 = -0.11 4$, $A_4 = -0.17 6$.
1299.16 <i>3</i> <i>x</i> 1310.1 <i>3</i> <i>x</i> 1322.2 <i>2</i> <i>x</i> 1341.2 <i>3</i>	1.19 <i>17</i> 0.082 <i>14</i> 0.078 <i>13</i> 0.074 <i>13</i>	2138.64	3+	839.494	2+	M1+E2	+0.32 2	$A_2 = +0.157 9, A_4 = -0.015 14.$
1351.11 <i>3</i> <i>x</i> 1358.0 <i>3</i> <i>x</i> 1368.5 <i>2</i> <i>x</i> 1374.65 <i>16</i>	1.23 <i>17</i> 0.043 <i>8</i> 0.090 <i>14</i> 0.078 <i>18</i>	2190.616	2+	839.494	2+	M1+E2 [#]	-0.27 2	A ₂ =+0.032 7, A ₄ =+0.002 10. POL=+1.9 +82-11.

ω

From ENSDF

 $^{130}_{52}$ Te $_{78}$ -3

L

						ν	(¹³⁰ Te) (conti	nued)
						<u>/</u>	(10) (00111	
E_{γ}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	Comments
^x 1414.34 <i>16</i>	0.062 11							
1443.09 <i>2</i> <i>x</i> 1448.18 <i>17</i>	1.66 <i>24</i> 0.043 <i>8</i>	2282.595	2+	839.494	2+	M1+E2 [#]	-0.10 2	A ₂ =+0.111 8, A ₄ =-0.003 12. POL=+1.8 +52-10.
1460.72 <i>3</i> <i>x</i> 1479.11 <i>15</i>	1.28 <i>18</i> 0.077 <i>16</i>	2300.22	(2 ⁺)	839.494	2+	(M1+E2)	-0.20 2	$A_2 = +0.067 \ I3, A_4 = -0.005 \ I9.$ $A_3 = -0.26 \ 7, A_4 = -0.23 \ I2.$
1491.24 7 ^x 1506.41 11	0.32 5 0.18 <i>3</i>	2330.73	(4 ⁺)	839.494	2+	(E2)		$A_2^2 = +0.31 3$, $A_4^2 = -0.10 4$.
1522.14 <i>12</i> <i>x</i> 1533.12 <i>19</i>	0.13 <i>2</i> 0.067 <i>11</i>	3155.03?		1632.999	4+			$A_2 = -0.07 \ 6, \ A_4 = -0.14 \ 9.$
1588.19 8 ^x 1597.7 2 ^x 1616.9 3	0.18 <i>3</i> 0.067 <i>11</i> 0.047 <i>8</i>	1588.259	2+	0.0	0+	E2		$A_2 = +0.21 \ 2, \ A_4 = -0.06 \ 4.$
1627.38 <i>3</i>	0.95 13	2466.89	2+	839.494	2+	M1+E2		$A_2 = -0.067 \ 15, A_4 = -0.033 \ 21.$ $\delta = -0.48 \ 4 \ or \ 1/\delta = -0.02 \ 3.$
^x 1636.56 9 ^x 1657.8 3	0.16 2 0.056 9							$A_2 = -0.20 \ 3, \ A_4 = +0.05 \ 4.$
1687.56 2 ^x 1721.85 13 ^x 1728.3 2 ^x 1735.5 2	1.9 <i>3</i> 0.04 <i>2</i> 0.061 <i>11</i> 0.032 <i>7</i>	2527.07	3-	839.494	2+	E1(+M2)#	+0.030 6	$A_2 = -0.163$ 7, $A_4 = -0.020$ 10. POL=+1.4 +17-10.
1741.64 <i>4</i> <i>x</i> 1752.7 <i>2</i>	0.75 <i>11</i> 0.12 <i>2</i>	2581.15	(2+)	839.494	2+	(M1+E2)	+0.18 2	$A_2 = +0.327 9, A_4 = -0.003 13.$
x1764.76 8 1767.81 8	0.28 <i>4</i> 0.22 <i>3</i>	2607.33	1	839.494	2^{+}			$A_2 = -0.12 5, A_4 = -0.02 8.$
^x 1829.8 3 1885.69 18 ^x 1893.99 16	0.13 2 0.12 2 0.136 20	1885.702	2+	0.0	0^+	E2		$A_2 = +0.14$ 7, $A_4 = -0.08$ 7.
1905.43 4 1949.76 5 *1987.7 3 *1995.3 3 *2048 30 18	0.130 20 0.56 8 0.37 5 0.034 7 0.067 11 0.092 14	2744.98 2789.26?	$(2^+,3)$ $(2^+,3)$	839.494 839.494	2+ 2+	D+Q	+0.018 13	$A_2 = -0.176 \ 14, A_4 = -0.027 \ 22.$ $A_2 = -0.14 \ 5, A_4 = -0.03 \ 7.$
x2106.13 10 x2114.05 6	0.16 2 0.26 5							
^x 2117.53 7 ^x 2170.2 2	0.18 <i>3</i> 0.055 <i>9</i>							$A_2 = +0.41 4$, $A_4 = 0.00 6$.
2190.60 <i>3</i> <i>x</i> 2243.7 <i>2</i> <i>x</i> 2271 8 <i>4</i>	1.31 <i>19</i> 0.092 <i>14</i>	2190.616	2+	0.0	0^+	E2		$A_2 = +0.25 2, A_4 = -0.12 2.$
2271.8 4 2282.60 7 x2289.1 5	0.052 7 0.35 5 0.044 8	2282.595	2+	0.0	0^+	E2		$A_2 = +0.20 2, A_4 = -0.11 3.$
2300.0 3	0.057 9	2300.22	(2 ⁺)	0.0	0^+	(E2)		$A_2 = +0.19 9, A_4 = +0.03 12.$

4

From ENSDF

 $^{130}_{52}\mathrm{Te}_{78}$ -4

 $^{130}_{52}$ Te₇₈-4

$\gamma(^{130}\text{Te})$ (continued)

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	Comments
x2338.0 4	0.034 7						
2466.94 18	0.094 14 0.10 2	2466.89	2+	0.0	0^+	E2	$A_2 = +0.25$ 7, $A_4 = -0.22$ 11.
^x 2480.0 3 ^x 2500.70 17	0.061 <i>10</i> 0.091 <i>14</i>						
x2560.8 3	0.055 9	2607.22	1	0.0	0+		
² 607.31 6 ^x 2625.59 18	0.36 5 0.11 2	2607.33	1	0.0	0,		$A_2 = -0.073, A_4 = -0.044.$ $A_2 = -0.209, A_4 = +0.1713.$
2689.09 5	0.40 6	2689.12	1	0.0	0^+		$A_2 = -0.10 2, A_4 = -0.04 3.$
2709.04	0.40 6	2743.14?	1	0.0	0^+	D	$A_2 = -0.11 \ 3, \ A_4 = -0.06 \ 4.$
x2755.3 7 x2784.3 3	0.060 <i>10</i> 0.074 <i>12</i>						
x2813.6 8	0.037 7						
x2889.6 4 x2945.92 14	0.080 12 0.13 2						
x3095.0 2	0.094 14						
x3127.7 3	0.050 8						
x3196.01 <i>13</i> x3241.80 <i>13</i>	0.102 <i>15</i> 0.13 <i>2</i>						
$x_{3342.0}$ 4	0.052 9						
x3567.9 2	0.062 10						
^x 3648.6 3 ^x 3983.5 4	0.041 7 0.050 8						
5765.5 1	0.020 0						
† Relative	I γ observed	at 120° to the	ne neu	tron b	eam.		
[*] From $\gamma(\theta$ [#] From $\gamma(\theta$	γ), except as γ) and γ (lin p	noted. pol).					
[@] From $\gamma(\theta)$) and $\alpha(K)e$	xp in ¹³⁰ Sb	β^- de	cay.			
^{α} Uncertain ^{a} Total the	n G. oretical inter	nal conversi	on coe	efficie	nts, ca	alculated u	using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies,
assigned	multipolariti	es, and mixi	ng rat	ios, ui	nless	otherwise	specified.
^{<i>v</i>} Placemer $x^{x} \gamma$ ray not	t of transitions that the transition of transition of the transition of transition of the transition of	on in the leve evel scheme.	el sch	eme is	s unce	ertain.	
, , ,							

¹³⁰₅₂Te₇₈

 $^{130}_{52}{
m Te}_{78}$

-