130 In β^- decay (0.29 s) 1981Fo02

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	NDS 93, 33 (2001)	11-May-2001				

Parent: ¹³⁰In: E=0.0; $J^{\pi}=1^{(-)}$; $T_{1/2}=0.29$ s 2; $Q(\beta^{-})=10249$ 38; $\%\beta^{-}$ decay=100.0

1981Fo02: measured E γ , I γ , ce, $\gamma\gamma$, $\beta\gamma(t)$, T_{1/2} (¹³⁰In).

Others:

1973Ke12 (also 1973Ke26): measured E γ , I γ , E β , $\beta\gamma$, T_{1/2}. Four γ rays were reported and a Q(β^-)=7300 400.

1990St13, 1987Sp09, 1985Fo03: measured $E\beta$, $\beta\gamma$.

1993Ru01, 1986Wa17 (also 1986ReZU,1986ReZS), 1983Sh07, 1981En05, 1980Lu04, 1977Ru09, 1976Lu02: measured $T_{1/2}(^{130}In)$, $\%\beta^-n$.

¹³⁰Sn Levels

E(level) [†]	Jπ‡	T _{1/2} #		Comments
0.0	0^{+}			
1221.26 5	(2^{+})			
1946.84 11	(7^{-})	1.7 min <i>1</i>	$T_{1/2}$: from Adopted Levels.	
1995.57 9	(4^{+})		, -	
2028.31 7	(2^{+})			
2084.80 9	(5 ⁻)	52 ns 3		
2214.60 9	(4 ⁻)	<0.5 ns		
3167.16 9	$(2^{-},3)$			
4119.77 10	(2^{-})			

[†] From least-squares adjustment to $E\gamma$'s.

[‡] From Adopted Levels.

[#] $\beta \gamma$ (t) or $\gamma \gamma$ (t) (1981Fo02).

β^{-} radiations

Eβ, Iβ, βγ measurements: 1985Fo03, 1987Sp09, 1990St13.

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments		
(6.13×10 ³ 4)	4119.77	89 11	4.2 1	av $E\beta$ = 2725 19 E(decay): 6168 61 (1987Sp09) from (952 γ) β coin; 5770 (1990St13), 6122 25 (1987Sp09), 6060 180 (1985Fo03) from (1905 γ) β coin; 5630 (1990St13) from (2092 γ) β coin; 5880 (1990St13) from (1221 γ) β coin.		
$(7.08 \times 10^{3 \ddagger 4})$	3167.16	<1	>6.5	av E β = 3176 19		
$(8.22 \times 10^{3 \ddagger} 4)$	2028.31	<1	>6.8	av E β = 3715 19		
$(9.03 \times 10^3 \ 4)$	1221.26	<5	>6.3	av $E\beta = 4095 \ 19$		
$(1.025 \times 10^4 \ 4)$	0.0	<15	>5.9	E(decay): 8530 (1990St13), 8840 250 (1985Fo03) from $(1221\gamma)\beta$ coin. av E β = 4670 19		
\[$I\beta^-$: from log <i>ft</i> >5.9 (for first-forbidden transition). E(decay): 10030 500 (1985Fo03) from singles β spectrum.		

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

 $^{130}_{50}$ Sn₈₀-2

$^{130}\mathrm{In}\,\beta^-$ decay (0.29 s) 1981Fo02 (continued)

 $\gamma(^{130}\text{Sn})$

I γ normalization: Σ (I(γ +ce) of γ 's from 4120) \approx 99. % β ⁻n=0.93 13.

Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult. [‡]	α [@]	Comments
89.23 3	51 5	2084.80	(5 ⁻)	1995.57	(4 ⁺)	E1	0.251	$\alpha(K)= 0.2171; \ \alpha(L)= 0.0276; \ \alpha(M)=0.00534; \ \alpha(N+)=0.00115 \ \alpha(K)\exp=0.237$
129.80 5	82 5	2214.60	(4 ⁻)	2084.80	(5 ⁻)	M1	0.273	α (K)= 0.2359; α (L)= 0.0299; α (M)=0.00584; α (N+)=0.00132 α (K)exp=0.19 4
137.96 5	25.6 20	2084.80	(5 ⁻)	1946.84	(7-)	E2	0.514	α (K)= 0.401; α (L)= 0.0912; α (M)=0.01828; α (N+)=0.00386 α (K)exp=0.37 8
219.08 10	2.9 3	2214.60	(4^{-})	1995.57	(4^{+})			
774.37 10	68 4	1995.57	(4^{+})	1221.26	(2^{+})			
807.01 10	2.2 2	2028.31	(2^{+})	1221.26	(2^{+})			
952.59 ^{&} 10	≈6.4 <mark>&†</mark>	3167.16	(2 ⁻ ,3)	2214.60	(4 ⁻)			
952.59 ^{&} 10	≈14.9 <mark>&†</mark>	4119.77	(2^{-})	3167.16	$(2^{-},3)$			
1221.24 5	81 4	1221.26	(2^{+})	0.0	0^{+}			
1905.17 10	100 5	4119.77	(2^{-})	2214.60	(4 ⁻)			
1945.82 10	8.3 7	3167.16	$(2^{-},3)$	1221.26	(2^{+})			
2028.34 10	4.7 4	2028.31	(2^{+})	0.0	0^{+}			
2091.45 15	6.9 7	4119.77	(2^{-})	2028.31	(2^{+})			
2898.5 <i>3</i>	3.2 4	4119.77	(2^{-})	1221.26	(2^{+})			

[†] From $\gamma\gamma$. Total I γ (952.59)=21.3 *10*. [‡] From α (K)exp.

[#] For absolute intensity per 100 decays, multiply by ≈ 0.79 .

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed with intensity suitably divided.

130 In β^- decay (0.29 s) 1981Fo02

Decay Scheme

 $^{130}_{50}{
m Sn}_{80}$