¹³⁰Sn β^- decay (1.7 min) 1994WaZU,1987StZO

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	NDS 93, 33 (2001)	11-May-2001					

Parent: ¹³⁰Sn: E=1946.88; $J^{\pi}=(7^{-})$; $T_{1/2}=1.7 \text{ min } l$; $Q(\beta^{-})=2148 \ l5$; $\%\beta^{-} \text{ decay}=100.0$

1994WaZU, 1987StZO (also 1988StZQ): measured $E\gamma$, $I\gamma$, $\gamma\gamma$.

1974Ke08 (also 1973Ke24): measured E γ , I γ , $\gamma\gamma$, ce, T_{1/2}. A total of 20 γ rays were reported, five of which were assigned in a level scheme.

1990St13, 1977Lu06: measured $\beta\gamma$.

1979Bo26: measured $E\gamma$ with a curved-crystal spectrometer.

¹³⁰Sb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0 5.04 24 68.04 12 84.67 4	$(8^{-}) (4,5)^{+} (^{+}) (6^{-},7^{-},8^{-})$	6.3 min 2	$T_{1/2}$: from Adopted Levels. J^{π} : 5 ⁺ (1994WaZU). J^{π} : 6 ⁻ (1994WaZU).
111.73 <i>11</i> 144.911 <i>5</i> 689 03 5	(⁻) (7 ⁻ ,8 ⁻)		J^{π} : 5 ⁻ (1994WaZU). J^{π} : 7 ⁻ (1994WaZU). I^{π} : 6 ⁻ (1994WaZU).
733.39 <i>5</i> 814.6 <i>5</i>	(6,7,8)		J^{π} : 7 ⁻ (1994WaZU).
870.96 9 882.96 7 937.71 7	(6,7,8)		$J^{*:}$ / (1994 waZU). $J^{\pi}: 6^{-}$ (1994 WaZU). $J^{\pi}: 7^{-}$ (1994 WaZU).
1044.64 5 1047.40 6 1096.8 8	(6,7,8)		
1159.85 7 1261.8 <i>3</i> 1306 14 9			J^{π} : 7 ⁻ ,8 ⁻ (1994WaZU). I^{π} : 7 ⁻ (1994WaZU)
1350.14 <i>J</i> 1352.9 <i>5</i> 1358.7 <i>4</i> 1482.4 <i>4</i> 1636.92 <i>10</i>			
1716.6 5 1726.72 20 1810.5 4 1813.0 4			
1893.24 21 1912.61 13 2023.0 5 2026.65 11			
2085.1 <i>5</i> 2096.5 <i>8</i> 2178.7 <i>5</i> 2200 5 <i>4</i>			
2271.8 <i>4</i> 2394.78 <i>9</i> 2416.8 <i>5</i>			
2457.4 <i>5</i> 2484.04 <i>18</i> 2526.30 <i>18</i> 2535 2 <i>5</i>			
2546.27 <i>12</i> 2580.3 7			

¹³⁰Sn β^- decay (1.7 min) 1994WaZU,1987StZO (continued)

¹³⁰Sb Levels (continued)

E(level)[†] 2614.9 5

2636.6 *10* 2761.9 *5* 2820.2 *8* 2983.1 *5*

 † From least-squares adjustment to Ey's.

^{\ddagger} From Adopted Levels, based on log *ft* values and transition multipolarities.

 β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(1112 15)	2983.1	0.39	6.0	av E <i>β</i> =393 7
(1275 15)	2820.2	0.66	6.0	av $E\beta = 462.7$
(1333 15)	2761.9	0.92	5.9	av $E\beta = 487.7$
(1458 15)	2636.6	0.23	6.7	av $E\beta = 541.7$
(1480 15)	2614.9	0.11	7.0	av $E\beta = 551 7$
(1515 15)	2580.3	0.64	6.3	av $E\beta = 566 7$
(1549 15)	2546.27	0.85	6.2	av $E\beta = 581.7$
(1560 15)	2535.2	0.074	7.3	av $E\beta = 586 7$
(1569 15)	2526.30	0.42	6.5	av E β =590 7
(1611 15)	2484.04	1.6	6.0	av $E\beta = 608 7$
(1637 15)	2457.4	0.25	6.8	av E β =620 7
(1678 15)	2416.8	0.32	6.7	av $E\beta = 638$ 7
(1700 15)	2394.78	4.1	5.7	av $E\beta$ =648 7
(1823 15)	2271.8	0.87	6.5	av $E\beta=703$ 7
(1894 15)	2200.5	0.60	6.7	av $E\beta = 735 7$
(1916 15)	2178.7	0.32	7.0	av $E\beta = 745 7$
(1998 15)	2096.5	0.025	8.2	av $E\beta = 782.7$
(2010 15)	2085.1	0.12	7.5	av E β =787 7
(2068 15)	2026.65	0.22	7.3	av $E\beta = 8137$
(2072 15)	2023.0	0.41	7.0	av E β =815 7
(2182 15)	1912.61	0.12	7.7	av $E\beta = 865 7$
(2202 15)	1893.24	0.15	7.6	av $E\beta = 874 7$
(2282 15)	1813.0	0.94	6.8	av E β =911 7
(2368 15)	1726.72	0.25	7.5	av E β =950 7
(2378 15)	1716.6	0.36	7.3	av E β =955 7
(2458 15)	1636.92	0.21	7.6	av E β =992 7
(2612 15)	1482.4	0.46	7.4	av Eβ=1063 7
(2736 15)	1358.7	1.2	7.1	av Eβ=1120 7
(2742 15)	1352.9	0.37	7.6	av E β =1123 7
(2789 15)	1306.14	1.3	7.0	av E β =1145 7
(2833 15)	1261.8	0.72	7.3	av E β =1165 7
(2935 15)	1159.85	1.3	7.2	av E β =1213 7
(2998 15)	1096.8	0.44	7.7	av E β =1242 7
(3047 15)	1047.40	2.4	7.0	av E β =1265 7
(3050 15)	1044.64	9.6	6.4	av E β =1267 7
(3157 15)	937.71	5.1	6.7	E(decay): 2990 <i>160</i> (1990St13), 2970 <i>270</i> (1977Lu06) from $(145\gamma)\beta$ coin; 2900 <i>111</i> (1990St13), 3180 <i>570</i> (1977Lu06) from $(311\gamma)\beta$ coin; 2905 <i>60</i> (1990St13), 2960 <i>310</i> (1977Lu06) from $(900\gamma)\beta$ coin. av E β =1316 7
(3212 15)	882.96	0.80	7.5	av E β =1342 7
(3224 15)	870.96	0.25	8.0	av E β =1348 7

Continued on next page (footnotes at end of table)

130 Sn β^- decay (1.7 min) 1994WaZU,1987StZO (continued)

β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft		Comments	
(3280 15)	814.6	0.49	7.7	av Eβ=1374 7		
(3361 15)	733.39	24	6.2	av $E\beta = 1412 7$		
(3950 15)	144.911	21	6.6	av E β =1689 7		
(3983 15)	111.73	3.4	7.2	av E β =1705 7		
(4010 15)	84.67	88	7.5	av $E\beta = 1717 7$		
(4027 15)	68.04	8.4	7.6	av $E\beta = 1725 7$		
(4095 [‡] 15)	0.0					

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

$\gamma(^{130}\text{Sb})$

I γ normalization: Σ (I(γ +ce) of γ 's to g.s. and 4.8 level)=100, assuming no β^{-} feeding to g.s. and 4.8 level.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{f}	Comments
43.69 5	7.64 22	111.73	(_)	68.04	(+)	(E1) [#]	1.90	
44.1 5	3.0 7	733.39	(6,7,8)	689.03		(M1) [#]	6.7	
60.21 5	14.6 <i>1</i>	144.911	(7 ⁻ ,8 ⁻)	84.67	(6 ⁻ ,7 ⁻ ,8 ⁻)	(M1) [#]	2.69	α (K)= 2.317; α (L)= 0.299; α (M)= 0.0591; α (N+)=0.01369
63.0 <i>2</i> 84.67 <i>5</i>	18.0 <i>4</i> 41.5 <i>5</i>	68.04 84.67	(⁺) (6 ⁻ ,7 ⁻ ,8 ⁻)	5.04 0.0	(4,5) ⁺ (8 ⁻)	(M1) [#] M1,E2	2.36 2.0 <i>10</i>	$\alpha(K)$ = 1.999; $\alpha(L)$ = 0.799; $\alpha(M)$ = 0.1642; $\alpha(N+)$ = 0.0353 E_{γ} : other: 84.208 <i>I</i> (1979Bo26). This value deviates significantly from 84.7 <i>I</i> (1974Ke08) and 84.67 (1987StZO), thus it is not used. Mult.: $\alpha(K)$ exp=1.19 25 gives M1+E2 with δ =0.7 <i>3</i> ; K/L=2.3 gives E2.
^x 91.9 [@] 1	7 [@] 2							C
^x 96.7 ^{^w} 1	7 ^{°°} 2	014.6		(00.00			0.40.00	
125.6 <i>5</i> 144.911 <i>5</i>	1.5 <i>4</i> 98.5 <i>5</i>	814.6 144.911	(7 ⁻ ,8 ⁻)	0.0 0.0	(8-)	[D,E2] M1	0.42 32 0.2209	α (K)= 0.1907; α (L)=0.02430; α (M)=0.00479; α (N+)=0.00111 α (K)exp=0.17 4; K/L=9.3 E _{γ} : from 1979Bo26. E γ =144.90 5 (1987StZO).
149.62 5	1.9 2	882.96		733.39	(6,7,8)	[D,E2]	0.23 17	
222.48 8	1.7 <i>1</i> 20.1 2	1159.85	(678)	937.71 733 30	(6,7,8)	[D E2]	0.021.72	E_{γ} : level-energy difference=222.15.
314.0 2 323.9 5	0.8 <i>I</i> 1.4 2	1044.04 1047.40 1261.8	(0,7,8)	733.39 733.39 937.71	(6,7,8) (6,7,8) (6,7,8)	[D,E2]	0.021 12	
425.7 ^{&} 2 482.2 <i>I</i> 544.09 <i>5</i> 611.3 <i>5</i>	0.5 <i>1</i> 1.61 8 25.5 6 2.7 2	1159.85 2394.78 689.03 1482.4		733.39 1912.61 144.911 870.96	(6,7,8) (7 ⁻ ,8 ⁻)			
648.5 <i>1</i> 669.7 <i>5</i>	11.1 <i>10</i> 3.6 2	733.39 1358.7	(6,7,8)	84.67 689.03	(6 ⁻ ,7 ⁻ ,8 ⁻)			

			130 Sn β^- d	lecay (1.7 n	nin) 1994WaZU,1987StZO (continued)
					$\gamma(^{130}\text{Sb})$ (continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger e}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}
733.4 1	100 10	733.39	(6,7,8)	0.0	(8 ⁻)
737.9 5	1.2 4	882.96		144.911	(7-,8-)
769.8 5	2.8 2	2580.3		1810.5	
771.0 1	6.6 2	882.96		111.73	(_)
853.33 ⁴ 8	17.8 4	937.71	(6,7,8)	84.67	(6 ⁻ ,7 ⁻ ,8 ⁻)
870.92 9	6.5 2	870.96		0.0	(8^{-})
8/5.4 5	2.9 4	1813.0	(670)	937.71	(6, 7, 8) $(7^{-}, 8^{-})$
899.79 3	33.4 4 2.66 2	1044.04	(0,7,8)	144.911	(7,8) (7-8-)
x_{012} ($^{0}_{0}$ 5	2.002	1047.40		144.711	(7,8)
⁴ 912.6 ³	8 2	027 71	(678)	0.0	(9-)
938.0 5	18.0 10	957.71	(0,7,8)	0.0 870.96	(8)
962 69 6	774	1047 40		84.67	$(6^{-} 7^{-} 8^{-})$
$x_{072,2}^{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$	$0^{@} 2$	1017.10		01.07	(0,7,5)
1001 8 8	192	2484 04		1482.4	
1014.7 1	4.5 2	1159.85		144.911	$(7^{-}.8^{-})$
1028.8 8	1.90 10	1096.8		68.04	$\binom{1}{+}$
1029.5 5	0.89 8	1912.61		882.96	
1117.1 <i>3</i>	2.00 5	1261.8		144.911	(7 ⁻ ,8 ⁻)
1134.1 5	1.4 2	2178.7		1044.64	(6,7,8)
1153.2 5	0.6 1	2200.5		1047.40	
1155.8 5	2.0 2	2200.5		1044.64	(6,7,8)
1139.0 2	$0.04 \ 3$	2484 04		0.0	(8)
1179.5.5	0.65.11	1912 61		733 39	(678)
$1195.3^{b}2$	0.87	1306.14		111 73	(0, 7, 0)
1204 2 2	0.63.6	1893 24		689.03	
1208.0 5	1.59 4	1352.9		144.911	(78-)
1213.8 5	1.53 11	1358.7		144.911	(7 ⁻ ,8 ⁻)
1214.1 5	0.51 2	2085.1		870.96	
1221.1 5	7.7 4	1306.14		84.67	(6 ⁻ ,7 ⁻ ,8 ⁻)
$x_{1223.7}d_{5}$	0.61 7				
1224.2 5	0.57 7	1912.61		689.03	
1227.1 5	1.0 1	2271.8		1044.64	(6,7,8)
1235.7 5	1.7 2	2394.78		1159.85	
12/3./ 5	0.28 1	2535.2		1261.8	(6,7,9)
1289.0 5	1.6 I 4 2 I	2025.0		/33.39	(0,7,8) (8^{-})
1334.1.8	2.3.2	2271.8		937.71	(6.7.8)
1337.6 1	0.14 1	2026.65		689.03	(0,1,0)
1350.7 5	3.0 2	2394.78		1044.64	(6,7,8)
1407.5 8	0.11 4	2096.5		689.03	
1439.0 5	1.4 2	2484.04		1044.64	(6,7,8)
1455.8 5	4.01 7	2761.9		1306.14	
1456.5 5	4.2 5	2394.78		937.71	(6,7,8)
^1478.5 ^w 8	9 ^w 2	0506.00		1045 40	
14/9.0 2	0.26 2	2526.30		1047.40	(9-)
1483.1 8 1402 0 1	1.2 I 0.03 4	1482.4		0.0	(0) $(7^{-}8^{-})$
1492.01	162	2394 78		882.96	(7,0)
1519.7 8	1.0 2	2457.4		937.71	(6,7,8)
1523.4 ^c	0.08 ^C	2394.78		870.96	
1538.5 5	0.49 6	2271.8		733.39	(6,7,8)
1571.7 5	1.58 5	1716.6		144.911	(7 ⁻ ,8 ⁻)
1581.8 2	1.1 <i>I</i>	1726.72		144.911	(7 ⁻ ,8 ⁻)

Continued on next page (footnotes at end of table)

		¹³⁰ Sn β ⁻ decay (1.7 min) 1994WaZU,1987StZO (continued)									
		$\gamma(^{130}\text{Sb})$ (continued)									
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger e}$	E _i (level)	E_f	\mathbf{J}_f^{π}	
1592 <i>1</i>	1.0 1	2636.6		1044.64	(6,7,8)	1768.4 5	0.07 1	2457.4	689.03		
1644.2 5	0.48 10	2526.30		882.96		1775.5 8	2.87 8	2820.2	1044.64	(6,7,8)	
1653 <i>1</i>	0.71 11	2526.30		870.96		1794.2 5	0.23 2	2484.04	689.03		
1661.4 <i>1</i>	3.9 2	2394.78		733.39	(6,7,8)	1836.3 5	0.36 5	2526.30	689.03		
1663.3 <i>1</i>	3.7 1	2546.27		882.96		1845 <i>1</i>	0.04 1	2535.2	689.03		
1665.8 5	1.16 10	1810.5		144.911	$(7^{-}, 8^{-})$	1881.5 5	0.46 8	2614.9	733.39	(6,7,8)	
1668.0 5	1.17 10	1813.0		144.911	$(7^{-}, 8^{-})$	1882.0 5	0.82 4	2026.65	144.911	$(7^{-}, 8^{-})$	
1704.8 5	1.9 2	2394.78		689.03		1938.4 5	1.7 2	2983.1	1044.64	(6,7,8)	
1727.8 5	1.4 <i>1</i>	2416.8		689.03		^x 2153.2 [@] 8	$4^{@} 2$				
1749.8 5	0.53 10	2484.04		733.39	(6,7,8)						

[†] From 1987StZO.

[‡] From α (K)exp and K/L (1974Ke08).

[#] From intensity balance (1994WaZU,1987StZO).

^(a) From 1974Ke08, who state that the identification is uncertain, and that the transition may belong to the decay of the 3.8-min activity. This transition is considered as suspect by the evaluator, since with the intensity quoted by 1974Ke08, it should have been detected in the γ and $\gamma\gamma$ coin experiment of 1987StZO.

[&] Level-energy difference=426.5.

^a Level-energy difference=853.04.

^b Level-energy difference=1194.4.

^c From level scheme figure of 1987StZO.

^d Placement 1912.6-688.98 shown by 1987StZO seems a misprint, since same placement is shown for 1224.2y.

^e For absolute intensity per 100 decays, multiply by 0.23 3.

 f Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

$\frac{130}{5}$ Sn β^- decay (1.7 min) 1994 WaZU, 1987 StZO

Decay Scheme

 $^{130}_{51}{
m Sb}_{79}$

¹³⁰Sn β^- decay (1.7 min) 1994WaZU,1987StZO

Decay Scheme (continued)

 $^{130}_{51}$ Sb₇₉

7

¹³⁰Sn β^- decay (1.7 min) 1994WaZU,1987StZO

Decay Scheme (continued)

8

130 Sn β^- decay (1.7 min) 1994WaZU,1987StZO

Decay Scheme (continued)

