¹³⁰Pm ε decay (2.6 s) **1999Xi03**

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh	NDS 93, 33 (2001)	11-May-2001						

Parent: ¹³⁰Pm: E=0.0; J^{π} =(4,5,6); $T_{1/2}$ =2.6 s 2; $Q(\varepsilon)$ =10871 SY; $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay=100.0

Measured E γ , I γ , $\gamma\gamma$, X γ coin, T_{1/2}. Deduced level scheme.

Other: 1985Wi07: measured $T_{1/2}$, delayed proton decay.

1999Xi03 have calculated log ft values based on the level scheme presented here, but in view of large gap of almost 8 MeV

between highest known level at 1185 and Q value, the $\varepsilon + \beta^+$ branches quoted by 1999Xi03 are considered as uncertain (evaluator) and are not given here.

¹³⁰Nd Levels

E(level)	J^{π}
0.0	0^{+}
158.9 2	2^{+}
485.2 <i>3</i>	4+
939.4 5	(6^{+})
946.3 4	
952.3 4	
1032.45	
1185.1 4	

[†] From Adopted Levels.

γ (¹³⁰Nd)

Iy normalization: Ti(158.9 γ)=100, assuming no other g.s. transitions exist and that delayed proton decay branch is small.

Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	α #	Comments
158.9 2	70	158.9	2+	0.0 0+	E2	0.43	I_{γ} : from I(γ +ce)=100 (1999Xi03) and α (158.9 γ)=0.43.
326.3 4	76 <i>3</i>	485.2	4+	158.9 2+	E2	0.041	
454.2 <i>3</i>	44 <i>3</i>	939.4	(6^{+})	485.2 4+			
547.2 4	13 5	1032.4		485.2 4+			
787.4 4	76	946.3		158.9 2+			
793.4 4	75	952.3		158.9 2+			
1026.2 4	98	1185.1		158.9 2+			E_{γ} : misprinted as 1062.2 in table 1 of 1999Xi03.

[†] From adopted gammas.

[‡] For absolute intensity per 100 decays, multiply by ≈ 1.0 .

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹³⁰Pm ε decay (2.6 s) 1999Xi03

Decay Scheme

