¹³⁰Ce ε decay (22.9 min) 1996Xu04

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 93, 33 (2001)	11-May-2001

¹³⁰La Levels

Parent: ¹³⁰Ce: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=22.9 \text{ min } 5$; $Q(\varepsilon)=2211 \text{ SY}$; $\%\varepsilon+\%\beta^+$ decay=100.0 130 Ce- Δ (Q(g.s.))=646 (syst, 1995Au04).

1996Xu04: measured E γ , I γ , x rays, $\gamma\gamma$, $\gamma\gamma(t)$, X $\gamma(t)$.

Others: 1965Ge03, 1966No05, 1968Ab02. 1968Ab02 report eight γ rays with only the 130 γ placed from a level of this energy. A γ spectrum shown by 2000Li08 shows some of the lines belonging to ¹³⁰Ce ε decay.

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	E(level)	Jπ†	E(level)	$J^{\pi \dagger}$
0.0	3 ⁽⁺⁾		431.51 15	(1)	672.93 23	(0,1)
110.44 9	$(1^+, 2, 3^+)$	17 ns 5	443.22 13	(1)	697.01 <i>14</i>	(1)
131.01 8	1+	77 ns 10	444.39 9	(1^{+})	810.47 22	(1)
219.73 9	(1^{+})		477.15 18	(1)	827.5 4	(0,1)
267.31 9	(1^{+})		477.96 13	(1^{+})	913.62 <i>13</i>	(1^{+})
304.10 12	(1)		481.89 16	(1)	985.91 22	(0,1)
307.48 9	(1)		523.88 11	(1^{+})	1032.45 12	(1^{+})
340.61 9	(1^{+})		589.06 16	(1)	1168.72 <i>13</i>	(1^{+})
350.71 10	(1)		594.28 18	(1)	1196.79 <i>10</i>	1+
384.78 9	(1)		606.75 18	(1)	1289.04 12	1^{+}
430.18 17	(1)		645.49 <i>14</i>	(1)	1431.19 <i>13</i>	(1^{+})

[†] From Adopted Levels.

[‡] From $\gamma \gamma(t)$.

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(779 SY)	1431.19		1.0 2	5.6	1.0 2	εK=0.842 19; εL=0.123 14; εM+=0.035 5
(921 <i>SY</i>)	1289.04		4.3 <i>3</i>	5.1	4.3 <i>3</i>	εK=0.844 11; εL=0.122 8; εM+=0.035 3
(1014 <i>SY</i>)	1196.79		11 <i>I</i>	4.8	11 <i>1</i>	εK=0.844 8; εL=0.121 6; εM+=0.0343 19
(1042 SY)	1168.72		3.0 2	5.4	3.0 2	εK=0.845 7; εL=0.121 6; εM+=0.0342 18
(1178 <i>SY</i>)	1032.45		1.4 2	5.8	1.4 2	εK=0.846 25; εL=0.120 8; εM+=0.034 3
(1225 SY)	985.91		0.3 1	6.5	0.3 1	εK=0.85 3; εL=0.120 7; εM+=0.0339 22
(1297 SY)	913.62		1.5 2	5.9	1.5 2	εK=0.85 4; εL=0.120 8; εM+=0.0338 23
(1383 SY)	827.5		0.4 1	6.5	0.4 1	εK=0.85 6; εL=0.119 10; εM+=0.034 3
(1400 SY)	810.47		0.3 1	6.6	0.3 1	εK=0.85 6; εL=0.119 10; εM+=0.034 3
(1513 SY)	697.01	0.01	0.99 22	6.2	1.0 2	av Eβ=230 285; εK=0.84 8; εL=0.118 13; εM+=0.033 4
(1538 SY)	672.93		0.8 1	6.3	0.8 1	εK=0.84 9; εL=0.118 13; εM+=0.033 4
(1565 SY)	645.49	0.01	0.8 2	6.3	0.8 2	av Eβ=253 286; εK=0.84 9; εL=0.118 14; εM+=0.033 4
(1604 <i>SY</i>)	606.75	0.01	0.8 2	6.3	0.8 2	av E β =270 286; ε K=0.84 10; ε L=0.118 15; ε M+=0.033 5
(1616 SY)	594.28	0.01	0.8 1	6.3	0.8 1	av E β =275 286; ε K=0.84 10; ε L=0.118 16; ε M+=0.033 5
(1621 <i>SY</i>)	589.06	0.01	0.8 1	6.3	0.8 1	av E β =277 286; ε K=0.84 10; ε L=0.117 16; ε M+=0.033 5
(1687 SY)	523.88	0.1	3.8 6	5.7	3.9 2	av Eβ=306 297; εK=0.83 12; εL=0.117 17; εM+=0.033 5
(1729 SY)	481.89	0.01	0.7 2	6.5	0.7 2	av Eβ=324 293; εK=0.83 13; εL=0.116 18; εM+=0.033 6
(1733 <i>SY</i>)	477.96	0.1	2.5 7	5.9	2.6 5	av E β =326 293; ε K=0.83 13; ε L=0.116 19; ε M+=0.033 6
(1733 <i>SY</i>)	477.15	0.01	0.7 2	6.5	0.7 2	av Eβ=326 293; εK=0.83 13; εL=0.116 19; εM+=0.033 6
(1766 SY)	444.39	0.1	3.3 12	5.8	3.4 11	av E β =340 291; ε K=0.83 13; ε L=0.116 19; ε M+=0.033 6
$(1767^{\ddagger} SY)$	443.22	0.01	0.3 2	6.9	0.3 2	av E β =341 290; ε K=0.83 13; ε L=0.116 19; ε M+=0.033 6
(1779 <i>SY</i>)	431.51	0.02	0.7 2	6.5	0.7 2	av Eβ=346 290; εK=0.83 14; εL=0.115 20; εM+=0.032 6
(1780 <i>SY</i>)	430.18	0.03	1.3 5	6.2	1.3 4	av E β =347 290; ε K=0.83 14; ε L=0.115 20; ε M+=0.032 6

Continued on next page (footnotes at end of table)

$^{130}\mathrm{Ce}\,\varepsilon$ decay (22.9 min) 1996Xu04 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+$ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments				
(1826 [‡] SY) (1860 SY) (1870 SY) (1903 SY)	384.78 350.71 340.61 307.48	<0.04 0.04 0.1 0.1	<1.2 1.2 6 2.7 7 2.0 6	>6.3 6.3 5.9 6.1	<1.2 1.2 6 2.8 4 2.1 4	av E β =367 288; ε K=0.82 14; ε L=0.115 21; ε M+=0.032 6 av E β =382 288; ε K=0.82 15; ε L=0.114 22; ε M+=0.032 6 av E β =386 288; ε K=0.82 15; ε L=0.114 22; ε M+=0.032 7 av E β =400 288; ε K=0.81 16; ε L=0.113 23; ε M+=0.032 7				
$(1906^{\ddagger} SY)$ (1943 SY) (1943 SY) (1991 SY) (2079 SY) $(2100^{\ddagger} SY)$	304.10 267.31 219.73 131.01 110.44	<0.1 0.4 0.4 3 9	0.6 5 7.0 21 5 2 39 11	6.6 5.5 5.7 4.9	0.6 5 7.4 10 5.2 20 42 2	av E β =402 288; ε K=0.81 16; ε L=0.113 23; ε M+=0.032 7 av E β =418 289; ε K=0.81 17; ε L=0.112 24; ε M+=0.032 7 av E β =439 289; ε K=0.80 17; ε L=0.111 25; ε M+=0.031 7 av E β =478 290; ε K=0.78 19; ε L=0.11 3; ε M+=0.031 8				

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

$\gamma(^{130}\text{La})$

I γ normalization: Σ (I(γ +ce) of γ 's to g.s.)=100. Conversion coefficients are included where significant.

Eγ	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α [@]
46.7 [†] 3	0.07 [‡] 3	350.71	(1)	304.10	(1)	[D,E2]	18 16
47.5 [†] 3	0.10 5	267.31	(1^{+})	219.73	(1^{+})	[M1,E2]	21 11
59.6 2	0.41 7	444.39	(1^+)	384.78	(1)	[D,E2]	7.5 65
73.5 <i>3</i>	0.13 6	340.61	(1^+)	267.31	(1^+)	[M1,E2]	4.4 17
77.6 2	0.05 3	384.78	(1)	307.48	(1)	[D,E2]	2.8 23
80.5 <i>3</i>	0.06 4	384.78	(1)	304.10	(1)	[D,E2]	2.4 20
83.4 2	0.28 6	350.71	(1)	267.31	(1^{+})	[D,E2]	2.2 18
87.9 [†] 3	0.34 [‡] 10	307.48	(1)	219.73	(1^{+})	[D,E2]	1.8 14
88.9 [†] 2	2.40 12	219.73	(1^+)	131.01	1+	[M1,E2]	0.23 8
93.3 2	0.90 18	477.96	(1^{+})	384.78	(1)	[D,E2]	1.4 11
103.9 2	0.65 13	444.39	(1^{+})	340.61	(1^{+})	[M1,E2]	1.4 4
109.3 [†] 3	5.8 [‡] 6	219.73	(1^+)	110.44	$(1^+, 2, 3^+)$	[D,E2]	0.8 6
110.4 2	5.8 6	110.44	$(1^+, 2, 3^+)$	0.0	3 ⁽⁺⁾	[D,E2]	0.8 6
127.5 3	0.06 4	431.51	(1)	304.10	(1)	[D,E2]	0.5 4
131.0 [†] 3	0.87 [‡] 5	350.71	(1)	219.73	(1^+)	[D,E2]	0.44 33
131.1 [†] 2	100.0	131.01	1+	0.0	3 ⁽⁺⁾	[E2]	0.77
136.4 2	13.7 3	267.31	(1^{+})	131.01	1+	[M1,E2]	0.56 11
136.6 [†] 3	0.96 [‡] <i>30</i>	444.39	(1^{+})	307.48	(1)	[D,E2]	0.38 28
139.0 <i>3</i>	0.06 [‡] 4	443.22	(1)	304.10	(1)	[D,E2]	0.36 27
141.3 2	0.6 4	481.89	(1)	340.61	(1^+)	[D,E2]	0.34 25
163.0 <i>3</i>	2.1 5	430.18	(1)	267.31	(1^{+})	[D,E2]	0.21 15
170.5 3	0.68 [‡] 10	477.96	(1^{+})	307.48	(1)	[D,E2]	0.18 13
173.1 2	0.59 12	523.88	(1^+)	350.71	(1)	[D,E2]	0.17 12
175.8 [†] 3	0.53 [‡] 26	443.22	(1)	267.31	(1^{+})	[D,E2]	0.17 14
176.9 [†] 2	3.52 14	444.39	(1^{+})	267.31	(1^{+})	[D,E2]	0.16 11
183.2 2	2.39 12	523.88	(1^+)	340.61	(1^+)	[M1,E2]	0.22 2
193.6 2	0.42 11	304.10	(1)	110.44	$(1^+, 2, 3^+)$	[D,E2]	0.12 8
196.9 2	2.45 15	307.48	(1)	110.44	$(1^+, 2, 3^+)$	[D,E2]	0.11 7

Continued on next page (footnotes at end of table)

				130 Ce ε decay (22.9 min) 1996Xu04 (continue						
				$\chi^{(130}$ La) (continued)						
					<u>y(</u>	La) (contin				
Eγ	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	$\alpha^{(a)}$			
209.6 [†] 2	11.85 20	340.61	(1^{+})	131.01	1^{+}	[M1,E2]	0.15			
209.9 [†] 2	0.85 [‡] 8	477.15	(1)	267.31	(1^{+})	[D,E2]	0.09 6			
214.7 3	0.36 [‡] 7	481.89	(1)	267.31	(1^{+})	[D,E2]	0.09 5			
219.8 2	15.7 16	219.73	(1^+)	0.0	3(+)	[E2]	0.13			
230.5 2	0.82 20	340.61	(1^{+})	110.44	$(1^+, 2, 3^+)$	[D,E2]	0.07 5			
240.1 2	0.71 10	350.71	(1)	110.44	$(1^+, 2, 3^+)$	[D,E2]	0.06 4			
248.4 2	0.58 20	589.06	(1)	340.61	(l^+)		0.05.2			
253.12	4.0 3	384.78	(1)	131.01	(1^+)	[D,E2]	0.05 3			
250.52	4.3014	525.00	(1)	4207.51	(1)	[1011,E2]	0.08			
266.9 2	0.82+ 10	697.01	(1)	430.18	(1)					
267.3 2	12.9 3	267.31	(1^{+})	0.0	$3^{(+)}$	[E2]	0.07			
2/4.2 2	2.46 12	384.78 645.40	(1)	110.44	$(1^{+}, 2, 3^{+})$	[D,E2]	0.04 3			
300 5 2	2.17.13	431 51	(1)	131.01	(1) 1 ⁺	[D E2]	0.03.2			
304.1.2	2.82.14	304 10	(1)	0.0	3(+)	[D,E2]	0.03 2			
307.5.2	14.35 10	307.48	(1)	0.0	3 ⁽⁺⁾	[D,E2]	0.03 2			
313.3 2	0.66 13	444.39	(1^+)	131.01	1+	[2,22]	0.00 -			
321.7 3	0.40 11	589.06	(1)	267.31	(1^{+})					
333.9 2	0.65 14	444.39	(1^{+})	110.44	$(1^+, 2, 3^+)$					
340.6 2	4.28 10	340.61	(1^{+})	0.0	3 ⁽⁺⁾	[D,E2]	0.03 2			
346.8 2	3.0 3	477.96	(1^{+})	131.01	1+					
350.8 2	1.71 15	350.71	(1)	0.0	$3^{(+)}$					
384.8 2	1.9 4	384.78	(1)	0.0	$3^{(+)}$					
387.02	0.624 0.3317	606.75 607.01	(1)	219.73	(1^{+}) (1)					
202.0.2	0.5517	572.00	(1)	121.01	(1) 1 ⁺					
393.02	0.96* 20	525.88	(1°)	131.01	$1^{(+)}$					
430.2 3	1.9 0	430.18	(1)	0.0	3(1)					
431.5 3	0.7 4	431.51	(1)	0.0	3(+)					
443.2 3	1.7 5	443.22	(1)	0.0	3(+)					
444.2 [†] 3	1.3 4	444.39	(1^{+})	0.0	3 ⁽⁺⁾					
463.3 2	1.86 18	594.28	(1)	131.01	1+					
4/0.5 2	0.55 14	913.62	(1^{+})	443.22	(1) 2(+)					
4/7.03	1.0 3	4/7.15	(1)	0.0	$3^{(+)}$					
4/8.0 3	1.0 3	4/7.90	(1^{+})	0.0	$3^{(+)}$					
401.7 3	0.0010	401.09	(1)	207.49	J (1)					
520.0 3	0.97710	827.5	(0,1)	307.48	(1) $2^{(+)}$					
524.0 3	1.09 22	523.88 013.62	(1^+)	0.0	(1)					
535.1.2	0.8.4	645 49	(1)	110 44	(1) $(1^+ 2 3^+)$					
541.7 3	2.00 10	672.93	(0,1)	131.01	1^+					
562.7 3	0.19 12	672.93	(0,1)	110.44	$(1^+, 2, 3^+)$					
566.2 2	1.3 <i>3</i>	697.01	(1)	131.01	1+					
589.2 <i>3</i>	1.11 <i>16</i>	589.06	(1)	0.0	3(+)					
590.7 <i>3</i>	0.42 [‡] 8	810.47	(1)	219.73	(1^+)					
594.2 <i>3</i>	0.21 10	594.28	(1)	0.0	3 ⁽⁺⁾					
605.8 <i>3</i>	1.5 5	913.62	(1^{+})	307.48	(1)					
606.8 <i>3</i>	1.5 5	606.75	(1)	0.0	$3^{(+)}$					
645.3 3	0.61 15	645.49	(1)	0.0	$3^{(+)}$					
694.2 <i>3</i>	0.38 20	913.62	(1^{\intercal})	219.73	(1')					
096./3	0.1/10	697.01	(1)	0.0	5					
718.6 2	0.76+ 15	985.91	(0,1)	267.31	(1^{+})					

Continued on next page (footnotes at end of table)

				¹³⁰ Ce ε decay (22.9 min)		22.9 min)	1996Xu04 (continued)		•		
						$\gamma(^{130}\text{La})$ (co	ontinued)				
Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π
724.9 2	0.91 15	1032.45	(1^{+})	307.48 (1)	948.8 <i>3</i>	1.6 3	1289.04	1+	340.61	(1^{+})
737.3 3	1.09 22	1168.72	(1^{+})	431.51 (1	.)	977.2 2	10.5 8	1196.79	1^{+}	219.73	(1^{+})
752.2 2	3.16 25	1196.79	1^{+}	444.39 (1	+)	986.6 <i>2</i>	0.7 4	1431.19	(1^{+})	444.39	(1^{+})
765.2 3	0.62 12	1032.45	(1^{+})	267.31 (1	+)	1032.8 <i>3</i>	0.54 16	1032.45	(1^{+})	0.0	$3^{(+)}$
782.5 <i>3</i>	0.45 [‡] 6	913.62	(1^{+})	131.01 1	+	1037.5 <i>3</i>	1.97 20	1168.72	(1^{+})	131.01	1^{+}
810.5 3	0.50 25	810.47	(1)	0.0 3((+)	1065.8 <i>3</i>	2.01 20	1196.79	1^{+}	131.01	1^{+}
812.0 3	1.7 4	1196.79	1^{+}	384.78 (1	.)	1069.3 <i>3</i>	0.76 16	1289.04	1^{+}	219.73	(1^{+})
818.0 2	1.30 14	1168.72	(1^{+})	350.71 (1)	1123.8 <i>3</i>	0.37 [‡] 5	1431.19	(1^{+})	307.48	(1)
828.3 <i>3</i>	0.71 14	1168.72	(1^{+})	340.61 (1	+)	1158.0 <i>3</i>	2.75 21	1289.04	1+	131.01	1+
845.6 2	1.04 16	1289.04	1^{+}	443.22 (1	.)	1164.0 <i>3</i>	0.56 17	1431.19	(1^{+})	267.31	(1^{+})
856.3 2	3.83 20	1196.79	1^{+}	340.61 (1	+)	1196.6 2	5.17 26	1196.79	1^{+}	0.0	$3^{(+)}$
861.2 2	2.99 18	1168.72	(1^{+})	307.48 (1	.)	1289.1 2	5.6 <i>3</i>	1289.04	1^{+}	0.0	$3^{(+)}$
889.4 2	3.28 20	1196.79	1^{+}	307.48 (1	.)	1300.3 <i>3</i>	0.57 16	1431.19	(1^{+})	131.01	1^{+}
901.3 2	1.37 15	1032.45	(1^{+})	131.01 1	+	1431.3 <i>3</i>	0.57 16	1431.19	(1^{+})	0.0	$3^{(+)}$
922.0 <i>3</i>	0.38 13	1032.45	(1+)	110.44 (1	+,2,3+)				. /		

[†] The γ-ray peak is a part of an unresolved doublet.
[‡] From γγ and Xγ coin spectra.
[#] For absolute intensity per 100 decays, multiply by 0.37 *1*.
[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹³⁰Ce ε decay (22.9 min) 1996Xu04

¹³⁰₅₇La₇₃

¹³⁰Ce ε decay (22.9 min) 1996Xu04

 $^{130}_{57}\mathrm{La}_{73}$

 \neg

 $^{130}_{57} La_{73}$ -7