		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 93,33 (2001)	11-May-2001

 $Q(\beta^{-}) = -2.20 \times 10^{3} 4$; $S(n) = 8.37 \times 10^{3} 4$; $S(p) = 3.85 \times 10^{3} 3$; $Q(\alpha) = 3.0 \times 10^{2} 3$ 2012Wa38 Note: Current evaluation has used the following Q record -2211 syst 8395 syst 3893 syst 250 syst 1995Au04. $\Delta(Q(\beta^{-}))=646, \ \Delta(S(n))=211, \ \Delta(S(p))=\Delta(Q(\alpha))=205.$

¹³⁰La Levels

Cross Reference (XREF) Flags

¹³⁰Ce ε decay (22.9 min) A

В

- С
- ${}^{51}V({}^{82}Se,3n\gamma)$ ${}^{98}Mo({}^{36}S,3np\gamma),{}^{115}In({}^{18}O,3n\gamma)$ ${}^{116}Cd({}^{19}F,5n\gamma),{}^{124}Te({}^{10}B,4n\gamma)$ D

E(level)	J^{π}	T _{1/2}	XREF	Comments
0.0	3 ⁽⁺⁾	8.7 min <i>1</i>	A	$\sqrt[\infty]{\varepsilon+\%\beta^+=100}$
				J ^{π} : ε feeding of 2 ⁺ and 4 ⁺ states in ¹³⁰ Ba; γ 's from 1 ⁺ .
				T _{1/2} : from 1963Ya05. Others: 1961Sh17, 1965Ge03.
110.44 9	$(1^+, 2, 3^+)$	17 ns 5	Α	J^{π} : γ to $3^{(+)}$; γ from (1 ⁺).
				$T_{1/2}$: From $\gamma\gamma(t)$ in ¹³⁰ Ce ε decay.
131.01 8	1+	77 ns 10	Α	J^{π} : log <i>ft</i> =4.9 from 0 ⁺ .
				$T_{1/2}$: From $\gamma\gamma(t)$ in ¹³⁰ Ce ε decay.
219.73 9	(1^{+})		Α	J^{π} : log ft=5.7 from 0 ⁺ ; γ to 3 ⁽⁺⁾ .
267.31 9	(1^{+})		Α	J^{π} : log ft=5.5 from 0 ⁺ ; γ to 3 ⁽⁺⁾ .
304.10 12	(1)		Α	J ^{π} : γ to 3 ⁽⁺⁾ ; possible ε feeding from 0 ⁺ .
307.48 9	(1)		Α	J^{π} : log <i>ft</i> =6.1 from 0 ⁺ ; γ to 3 ⁽⁺⁾ .
340.61 9	(1^{+})		Α	J^{π} : log <i>ft</i> =5.9 from 0 ⁺ ; γ to 3 ⁽⁺⁾ .
350.71 10	(1)		Α	J^{π} : log <i>ft</i> =6.3 from 0 ⁺ ; γ to 3 ⁽⁺⁾ .
384.78 9	(1)		Α	J^{π} : γ to $3^{(+)}$; possible ε feeding from 0^+ .
430.18 17	(1)		Α	J^{π} : log <i>ft</i> =6.2 from 0 ⁺ ; γ to 3 ⁽⁺⁾ .
431.51 15	(1)		Α	J^{π} : log <i>ft</i> =6.5 from 0 ⁺ ; γ to 3 ⁽⁺⁾ .
443.22 13	(1)		Α	J^{π} : γ to $3^{(+)}$; possible ε feeding from 0^+ .
444.39 9	(1^{+})		Α	J^{π} : log <i>ft</i> =5.8 from 0 ⁺ ; γ to 3 ⁽⁺⁾ .
477.15 18	(1)		Α	J^{π} : log <i>ft</i> =6.5 from 0 ⁺ ; γ to 3 ⁽⁺⁾ .
477.96 <i>13</i>	(1^{+})		Α	J^{π} : log <i>ft</i> =5.9 from 0 ⁺ ; γ to 3 ⁽⁺⁾ .
481.89 <i>16</i>	(1)		Α	J^{π} : log <i>ft</i> =6.5 from 0 ⁺ ; γ to 3 ⁽⁺⁾ .
523.88 11	(1^+)		Α	J^{π} : log <i>ft</i> =5.7 from 0 ⁺ ; γ to 3 ⁽⁺⁾ .
589.06 16	(1)		Α	J^{π} : log <i>ft</i> =6.3 from 0 ⁺ ; γ to 3 ⁽⁺⁾ .
594.28 18	(1)		Α	J^{π} : log <i>ft</i> =6.3 from 0 ⁺ ; γ to 3 ⁽⁺⁾ .
606.75 18	(1)		Α	J^{π} : log <i>ft</i> =6.3 from 0 ⁺ ; γ to 3 ⁽⁺⁾ .
645.49 <i>14</i>	(1)		Α	J^{π} : log <i>ft</i> =6.3 from 0 ⁺ ; γ to 3 ⁽⁺⁾ .
672.93 <i>23</i>	(0,1)		Α	J^{π} : log <i>ft</i> =6.3 from 0 ⁺ .
697.01 <i>14</i>	(1)		Α	J^{π} : log <i>ft</i> =6.2 from 0 ⁺ ; γ to 3 ⁽⁺⁾ .
810.47 22	(1)		Α	J^{π} : log <i>ft</i> =6.6 from 0 ⁺ ; γ to 3 ⁽⁺⁾ .
827.5 4	(0,1)		Α	J^{π} : log <i>ft</i> =6.5 from 0 ⁺ .
913.62 13	(1^+)		A	J^{n} : log ft=5.9 from 0 ⁺ .
985.91 22	(0,1)		A	J^{n} : log <i>ft</i> =6.5 from U^{T} .
1032.45 12	(1^{+})		A	J^{*} : log $ft=5.8$ from 0^{+} ; γ to $3^{(+)}$.
1108.72.73	(1')		A	J ^{**} : $\log ft = 5.4$ Irom U ⁺ .
1196./9 10	1 ⁻ 1+		A	J ^T : $\log \pi$ =4.8 IFOM U ^T .
1209.04 12	1		A	$J : \log \mu = 3.1 \mod 0$.

¹³⁰La Levels (continued)

E(level)	J^{π}	XREF	Comments
1431.19 <i>13</i>	(1^{+})	A	J^{π} : log ft=5.6 from 0 ⁺ ; γ to (3) ⁺ .
0+x		BCD	J^{π} : γ from (9 ⁺).
5.1+x 5	Ŧ	В	J^{π} : $\Delta J=2 \gamma$ from (9 ⁺).
45.1+x 10	+	В	
88.4+x ⁴ 7	(6 ⁻)'	BCD	J^{n} : γ' s from (8 ⁻) and (7 ⁻).
113.9+x 4	+	BCD	J^{n} : γ' s from (9 ⁺) and possibly from (7 ⁻).
150.3+x 8	+ +	В	$J': \gamma \text{ from } (9^+).$
160.3 + x 3	T (7-) [†]	В	J^{*} : γ from (9 ⁺).
$160.4 + x^{\circ} 5$	$(/)^{+}$	BCD	
$2/9.0+x^{4}$ 5	$(8)^{+}$	BCD	
$385.4 + x^{\circ} 4$	$(9^{-})^{\dagger}$	BCD	
$430.3 + x^2 3$	$(9)^{+}$	BCD	
$522.9 + x^{j}$ 5	$(10^{-})^{\dagger}$	BCD	
$0/7.3 + x^{a} 0$	$(10)^{\dagger}$	BCD	
$802.2 + x^2 $ 3	$(11^{-})^{\dagger}$	BCD	
947.0+x = 0 1048 5 + x = 5	$(11)^+$ $(12^+)^{\dagger}$	BCD	
$1048.3 \pm x^8 J$ $1077.9 \pm x^8 J0$	$(12)^{+}$ $(11^{+})^{+}$	БСД	
$1077.9 \pm x^{d}$ 6	$(11^{-})^{+}$	BCD	
$1422 \ 8+x^{e} \ 6$	$(12^{+})^{+}$	R D	
$14345 + x^{h} 10$	$(12^+)^{\dagger}$	D	
$1597.3 + x^{\circ} 6$	$(12^{-})^{\dagger}$	BCD	
$1748.5 + x^{f} 6$	$(13^{+})^{\dagger}$	B D	
$1778.2 + x^8 10$	$(13^+)^{\dagger}$	D	
$1970.1 + x^d$ 7	$(14^{-})^{\dagger}$	BCD	
2163.0+x ^h 10	$(14^+)^{\dagger}$	D	
2194.1+x ^e 6	$(15^+)^{\dagger}$	ΒD	
2384.4+x ^c 7	$(15^{-})^{\dagger}$	BCD	
2586.7+x ^f 6	$(16^{+})^{\dagger}$	ΒD	
2590.3+x ^g 10	$(15^+)^{\dagger}$	D	
2818.2+x ^d 7	(16 ⁻) [†]	BCD	
2961.0+x ^h 10	$(16^{+})^{\dagger}$	D	
3096.1+x ^e 7	$(17^{+})^{\dagger}$	ΒD	
3289.5+x ^c 7	(17 ⁻) [†]	BCD	
$3541.5 + x^{f}$ 7	$(18^+)^{\dagger}$	ΒD	
3771.4+x ^d 8	(18 ⁻)	BCD	
4105.0+x ^e 7	(19 ⁺)	В	
4271.6+x ^c 8	(19 ⁻)	BC	
$4589.6 + x^{f}$ 7	(20 ⁺)	ΒD	E(level): population of this level is uncertain in $({}^{19}F,5n\gamma)$ and $({}^{10}B,4n\gamma)$.
4720.2+x ^{<i>d</i>} 8	(20 ⁻)	В	
5185.0+x ^c 8	(21 ⁻)	В	
5185.2+x ^e 8	(21 ⁺)	В	
$5644.5 + x^{a} 8$	(22 ⁻)!	В	
5696.8+x ^J 10	(22 ⁺)	В	

				¹³⁰ La]	Levels (cor	nti
E(level)	J^{π}	XREF	E(level)	J^{π}	XREF	
6156.8+x ^C 8	(23 ⁻) [†]	В	2807.9+y ^j 10	(16) ^b	В	
6658.1+x ^d 8	(24 ⁻) [†]	В	3340.0+y ⁱ 11	(17) ^b	В	
6818.8+x ^f 17	$(24^{+})^{\dagger}$	В	3889.5+y ^j 12	(18) ^b	В	
7203.2+x ^c 10	(25 ⁻) [†]	В	4462.0+y ⁱ 13	(19) ^b	В	
7759.0+x ^d 10	(26 ⁻) [†]	В	5054.8+y ^j 13	(20) ^b	В	
7949.8+x f 22	$(26^{+})^{\dagger}$	В	5638.0+y ⁱ 14	(21) ^b	В	
8282.7+x ^c 11	(27 ⁻) [†]	В	z ^k	J≈(16) [@]	В	
0.0+y ^{<i>a</i>}	(7) ^b	В	762.4+z ^k	J+2	В	
86.9+y [#] 9	(9) ^b	В	1613.9+z ^k	J+4	В	
358.8+y ⁱ 5	(9) ^b	В	2534.4+z ^k	J+6	В	
489.7+y ^{&} <i>j</i> 7	(10) ^b	В	3532.1+z ^k	J+8	В	
732.6+y ⁱ 8	(11) <mark>b</mark>	В	4604.7+z ^k	J+10	В	
1046.6+y ^j 9	(12) ^b	В	5753.0+z ^k	J+12	В	
1418.2+y ⁱ 9	(13) ^b	В	6982.4+z ^k	J+14	В	
1841.2+y ^j 10	(14) ^b	В	8301.0+z ^k	J+16	В	
2305.6+y ⁱ 10	(15) ^b	В	9713.4+z ^k	J+18	В	

¹³⁰ La Levels	(continued)
--------------------------	-------------

[†] Based on the assignments from 1987Pa27, 2001Ko30 and 1996Li13. The assignment of $J^{\pi}=(9^+)$ to the bandhead of $\pi h_{11/2} \nu h_{11/2}$ configuration is based on detailed systematics analysis (1996Li13) of odd-odd nuclides in A=130 region. It should Be noted that J^{π} assignments given by 1989Go04 and 1989Go06 are lower by 3 units of spin for $\pi h_{11/2} \nu h_{11/2}$ and $\pi h_{11/2} \nu g_{7/2}$ bands.

 \ddagger (4) for 5.1+x and 160.3+x; (5) for 113.9+x and 150.3+x, proposed (1989Go04,1989Go06) in (⁸²Se,3ny) seem lower by 3 units of spin in view of feeding transition from higher levels whose $J^{\pi'}$ s have been revised by 2001Ko30 and 1996Li13.

[#] Decays to 802+x, (11^+) through unidentified transitions.

[@] From 1989Go13.

[&] Decays to 677+x, (10⁻) also through unidentified transitions.

^{*a*} Decays to 456+x, (9^{-}) through unidentified transitions.

^b From 1989Go06, but it is likely to Be higher by 3 units of spin, based on J^{π} assignments of $\pi h_{11/2} v_{97/2}$ and $\pi h_{11/2} v_{11/2}$ bands from 2001Ko30, 1996Li13 and 1987Pa23.

^{*c*} Band(A): $\pi h_{11/2} \nu g_{7/2}$, $\alpha = 1$.

- ^d Band(a): $\pi h_{11/2} \nu g_{7/2}$, $\alpha = 0$.
- ^e Band(B): $\pi h_{11/2} \nu h_{11/2}$, $\alpha = 1$.
- ^{*f*} Band(b): $\pi h_{11/2} \nu h_{11/2}$, $\alpha = 0$.
- ^g Band(C): Doublet (Chiral) partner of $\pi h_{11/2} \nu h_{11/2}$, $\alpha = 1$ (2001Ko30).
- ^h Band(c): Doublet (Chiral) partner of $\pi h_{11/2} \nu h_{11/2}$, $\alpha = 0$ (2001Ko30).
- ^{*i*} Band(D): Collective oblate band, $\alpha = 1$.
- ^{*j*} Band(d): Collective oblate band, $\alpha = 0$.
- ^k Band(E): SD band (1989Go13). Percent population=10 in ${}^{51}V({}^{82}Se,3n\gamma)$ (1989Go13). Proposed (1989Go13) configuration= $v((N=5)^{10}(N=6)^1)\pi((N=4)^{14}(N=5)^3)$, where N=principal quantum number.

Adopted	Levels,	Gammas	(continued)
---------	---------	--------	-------------

$\gamma(^{130}\text{La})$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.@	α ^g
110.44	$(1^+, 2, 3^+)$	110.4 [‡] 2	100	0.0	3(+)	[D,E2]	0.8 6
131.01	1+	131.1 [‡] 2	100	0.0	3 ⁽⁺⁾	[E2]	0.77
219.73	(1^{+})	88.9 [‡] 2	15.2 8	131.01	1+	[M1.E2]	0.23 8
		109.3 [‡] 3	37 4	110.44	$(1^+, 2, 3^+)$	[D.E2]	0.8 6
		219.8 2	100 10	0.0	3(+)	[E2]	0.13
267.31	(1^{+})	47.5 [‡] 3	0.7 4	219.73	(1^{+})	[M1,E2]	21 11
		136.4 [‡] 2	100.0 22	131.01	1+	[M1,E2]	0.56 11
		267.3 [‡] 2	94.2 22	0.0	3(+)	[E2]	0.07
304.10	(1)	193.6 2	15 4	110.44	$(1^+, 2, 3^+)$	[D,E2]	0.12 8
		304.1 2	100 5	0.0	3 ⁽⁺⁾	[D,E2]	0.03 2
307.48	(1)	87.9 [‡] 3	2.4 7	219.73	(1^+)	[D,E2]	1.8 14
		196.9 2	17.1 11	110.44	$(1^+, 2, 3^+)$	[D,E2]	0.11 7
240 (1	(1+)	307.5 2	100.0 7	0.0	$3^{(+)}$	[D,E2]	0.03 2
340.61	(1^{+})	/3.5 3	1.1.5	267.31	(1')	[M1,E2]	4.4 1/
		209.6+ 2	100.0 17	131.01	l^+	[M1,E2]	0.15
		250.5 2	0.9 <i>11</i> 36.1.8	0.0	(1,2,3) (1)	[D,E2]	0.07 5
250 71	(1)	16 7 [±] 2	JU.1 0	204.10	(1)	[D, E2]	18 16
550.71	(1)	40.7° 3 83.4.2	4.1 10	267 31	(1) (1^+)	[D, E2]	22.18
		$131.0^{\ddagger}.3$	51 3	219.73	(1^+)	[D,E2]	0 44 33
		240.1 2	42 6	110.44	$(1^+, 2, 3^+)$	[D,E2]	0.06 4
		350.8 2	100 9	0.0	3(+)	L / J	
384.78	(1)	77.6 2	1.2 8	307.48	(1)	[D,E2]	2.8 23
		80.5 3	1.5 10	304.10	(1)	[D,E2]	2.4 20
		253.7 2	100 8	131.01	l^+	[D,E2]	0.05 3
		214.2 2	62 3 48 10	110.44	$(1^+, 2, 3^+)$	[D,E2]	0.04 3
430.18	(1)	163.0.3	100 24	267.31	(1^+)	[D.E2]	0.21 15
100110	(1)	$430.2^{\ddagger}.3$	90.29	0.0	3 ⁽⁺⁾	[2,22]	0.21 10
431.51	(1)	127.5 3	2.8 18	304.10	(1)	[D,E2]	0.5 4
		300.5 2	100 6	131.01	1+	[D,E2]	0.03 2
		431.5 [‡] <i>3</i>	32 18	0.0	3(+)		
443.22	(1)	139.0 <i>3</i>	3.5 24	304.10	(1)	[D,E2]	0.36 27
		175.8 [‡] 3	31 15	267.31	(1^{+})	[D,E2]	0.17 14
		443.2 [‡] 3	100 29	0.0	3 ⁽⁺⁾		
444.39	(1^{+})	59.6 2	11.7 20	384.78	(1)	[D,E2]	7.5 65
		103.9 2	18 4	340.61	(1')	[MI,E2]	1.4 4
		136.6+ 3	27.9	307.48	(1)	[D,E2]	0.38 28
		176.9+ 2	100 4	267.31	(l^+)	[D,E2]	0.16 11
		313.5 2	19 4 18 4	131.01	$(1^+ 2 3^+)$		
		111 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	37 11	0.0	(1, 2, 3) 3(+)		
177 15	(1)	$200 0^{\ddagger} 2$	05 0	267 21	(1^+)	[D E2]	0.00.6
4//.13	(1)	209.9°2 477.0.3	05 0 100 30	207.31	(1) 3(+)	[D,E2]	0.09 0
477.96	(1^{+})	93.3 2	30 6	384.78	(1)	[D,E2]	1.4 11
	× /	170.5 3	23 3	307.48	(1)	[D,E2]	0.18 13
		346.8 2	100 10	131.01	1+		
101.00		478.0 3	33 10	0.0	$3^{(+)}$		0.01.0-
481.89	(1)	141.3 2	91 60	340.61	(1^{+})	[D,E2]	0.34 25

					7	24) (Contin	1404)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.@	α ^g
481.89	(1)	214.7 3	55 11	267.31	(1^{+})	[D,E2]	0.09 5
		481.7 <i>3</i>	100 15	0.0	3 ⁽⁺⁾		
523.88	(1^{+})	173.1 2	13 <i>3</i>	350.71	(1)	[D,E2]	0.17 12
		183.2 2	53 <i>3</i>	340.61	(1^+)	[M1,E2]	0.22 2
		256.5 2	100 3	267.31	(1^+)	[M1,E2]	0.08
		393.0 2	21 4	131.01	1+		
500.06	(1)	524.0 3	24 5	0.0	$3^{(+)}$		
589.06	(1)	248.4 2	52 18	340.61	(1^+)		
		321.7 3	36 10	267.31	(1^{+})		
504.20	(1)	589.2 5	100 14	0.0	1+		
394.28	(1)	405.5 2	11 5	131.01	$\frac{1}{2(+)}$		
606 75	(1)	394.2 3	11.3	210.73	(1^+)		
000.75	(1)	606.8.3	100 33	219.75	(1) (1) (1)		
645 49	(1)	294.8.2	84 25	350.71	(1)		
0+5.+7	(1)	535.1.2	100 50	110 44	$(1^{+}, 2, 3^{+})$		
		645.3.3	76 19	0.0	(1 ^{,2,5}) 3 ⁽⁺⁾		
672.93	(0.1)	541.7 3	100 5	131.01	1+		
		562.7 3	10 6	110.44	$(1^+, 2, 3^+)$		
697.01	(1)	266.9 [‡] 2	63.8	430.18	(1)		
	(-)	389.2 3	25 13	307.48	(1)		
		566.2 2	100 23	131.01	1+		
		696.7 <i>3</i>	13 8	0.0	3 ⁽⁺⁾		
810.47	(1)	590.7 <i>3</i>	84 16	219.73	(1^+)		
		810.5 3	100 50	0.0	$3^{(+)}$		
827.5	(0,1)	520.0 3	100	307.48	(1)		
913.62	(1^{+})	470.5 2	37.9	443.22	(1)		
		528.8 2	82 16	384.78	(1)		
		604 2 <i>3</i>	100 33	307.48 210.72	(1)		
		782 5 3	25 15	131.01	(1) 1 ⁺		
985 91	(0.1)	718.6.2	100	267 31	(1^+)		
1032.45	(0,1) (1^+)	724.9 2	66 11	307.48	(1)		
	. ,	765.2 3	45 9	267.31	(1^+)		
		901.3 2	100 11	131.01	1+		
		922.0 <i>3</i>	28 9	110.44	$(1^+, 2, 3^+)$		
		1032.8 <i>3</i>	39 12	0.0	$3^{(+)}$		
1168.72	(1^{+})	737.3 3	36 7	431.51	(1)		
		818.0 2	43 5	350.71	(1)		
		828.3 3	24.5	340.61	(1^{+})		
		801.2 2	100 0	307.48	(1) 1 ⁺		
1106 70	1+	1037.3 3	30.1.24	131.01	(1^+)		
1190.79	1	812.0.3	16 4	384 78	(1)		
		856.3 2	36.5 19	340.61	(1^{+})		
		889.4 2	31.2 19	307.48	(1)		
		977.2 2	100 8	219.73	(1^+)		
		1065.8 <i>3</i>	19.1 <i>19</i>	131.01	1+		
		1196.6 2	49.2 25	0.0	3(+)		
1289.04	1^{+}	845.6 2	19 <i>3</i>	443.22	(1)		
		948.8 3	29 5	340.61	(1^+)		
		1069.3 3	14 3	219.73	(1^{+})		
		1158.0 3	49 <i>4</i>	131.01	1'		
		1289.1 2	100 5	0.0	3(*)		

$\gamma(^{130}\text{La})$	(continued)

γ ⁽¹³⁰La) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.@
1431.19	(1^{+})	986.6 2	100 57	444.39 (1 ⁺)	
		1123.8 <i>3</i>	53 7	307.48 (1)	
		1164.0 <i>3</i>	80 24	267.31 (1 ⁺)	
		1300.3 <i>3</i>	81 23	131.01 1+	
		1431.3 <i>3</i>	81 23	$0.0 3^{(+)}$	
113.9+x		113.9 5	100	0+x	
150.3 + x	(7 -)	105.2.5	100	45.1+x	
100.4+X	(/)	40.4 3	<10	113.9 + X 88.4 + x (6 ⁻)	
270.0 + **	(0^{-})	11072	100.0 6	$160.4 + x (0^{-})$	MILEO
279.0+X	(8)	118.75	100.0 0	100.4 + X (7)	MIT+E2
205 4	(0^{\pm})	190./* /	2.69	88.4+x (6)	
383.4+X	(9)	225.1.3	7.20	2/9.0+x (8) 160.3+x	0
		225.13	~ 55	150.2 L w	Q
		233.1.7	>33 100 <i>1</i>	$130.3 \pm x$ 113.0 $\pm x$	
		380 3 3	40 1 18	51+x	0
		385.4 5	13.1 9	0+x	×
456.3+x	(9 ⁻)	177.2 3	100.0 16	279.0+x (8 ⁻)	D+Q
		295.9 <i>3</i>	13.8 ^a 16	160.4+x (7 ⁻)	
522.9+x	(10^{+})	137.5 <i>3</i>	100	385.4+x (9 ⁺)	D+Q
677.5+x	(10 ⁻)	221.2 3	100.0 23	456.3+x (9 ⁻)	M1+E2
		398.4 <i>3</i>	46.6 <mark>6</mark> 23	279.0+x (8 ⁻)	
802.2+x	(11^{+})	279.4 3	100.0 21	522.9+x (10 ⁺)	M1+E2&
		416.9 5	3.6 21	385.4+x (9 ⁺)	
947.0+x	(11^{-})	269.5 [‡] 7	87.6 21	677.5+x (10 ⁻)	D+Q
		490.7 <i>3</i>	100.0 21	456.3+x (9 ⁻)	(Q)
1048.5+x	(12^{+})	246.3 <i>3</i>	100.0 20	802.2+x (11 ⁺)	M1+E2&
		525.7 <i>3</i>	44.5 20	522.9+x (10 ⁺)	
1077.9+x	(11^{+})	555		$522.9+x (10^+)$	
1250.2+x	(12^{-})	303.2 3	54.3° 20	947.0+x (11 ⁻)	D+Q
		572.73	100.0 20	6//.5+x (10)	(Q)
1422.8+x	(13^{+})	374.3+ 7	100.0 26	$1048.5 + x (12^+)$	
1/2/ 5 LV	(12^{+})	620.6 3 257	39.4 26	802.2+x (11 ⁺)	
1434.J+X	(12)	632		$1077.9 \pm x$ (11) $802.2 \pm x$ (11 ⁺)	
1507 2 L v	(12^{-})	347.1 ± 7	20.2d 21	$1250.2 \pm x (12^{-})$	
1377.378	(15)	650 3 3	$100 \ 0 \ 21$	947.0+x (11 ⁻)	(0)
1748.5+x	(14^{+})	325.7 3	68.1 79	1422.8+x (13 ⁺)	
	()	700.0 3	100.0 19	$1048.5 + x (12^+)$	
1778.2+x	(13^{+})	700		1077.9+x (11 ⁺)	
		730		$1048.5 + x (12^+)$	
1970.1+x	(14 ⁻)	372.8 [‡] 7	39.5 22	1597.3+x (13 ⁻)	
		719.9 <i>3</i>	100.0 22	$1250.2+x$ (12^{-})	Q
2163.0+x	(14^{+})	385		$1778.2 + x (13^+)$	
		728 ^{<i>h</i>}		$1434.5 + x (12^+)$	
		740		1422.8+x (13 ⁺)	
2194.1+x	(15^+)	445.6 [‡] 7	100 5	1748.5+x (14 ⁺)	
		771.3 3	72 ^e 5	1422.8+x (13 ⁺)	
2384.4+x	(15 ⁻)	414.3 5	16.8 [†] 21	1970.1+x (14 ⁻)	
0506 5		787.1 3	100.0 21	$1597.3 + x (13^{-})$	(Q)
2586.7+x	(16^{+})	392.6 <i>3</i>	31 5	$2194.1 + x (15^+)$	

$\gamma(^{130}\text{La})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.@
2586.7+x	(16 ⁺)	838.2 <i>3</i>	100 5	1748.5+x	(14^{+})	
2590.3+x	(15^{+})	426 ^h		2163.0+x	(14^{+})	
		812		1778.2+x	(13 ⁺)	
		842		1748.5+x	(14^{+})	
2818.2+x	(16 ⁻)	433.8 5	22.1 26	2384.4+x	(15 ⁻)	
		848.1 3	100.0 26	1970.1+x	(14^{-})	
2961.0+x	(16^{+})	372 ⁿ		2590.3+x	(15^{+})	
		767 ^h		2194.1+x	(15^{+})	
		798		2163.0+x	(14^{+})	
3096.1+x	(17 ⁺)	509.5 [‡] 7	82 6	2586.7+x	(16 ⁺)	
2200 5 .	(17-)	902.1+ 7	100 6	2194.1+x	(15^{+})	
3289.5+x	(1/)	4/1.3 5	1/3	2818.2+x	(16)	
		905.1+7	100 3	2384.4+x	(15^{-})	
3541.5+x	(18+)	445.4 [‡] 7	24 4	3096.1+x	(17^+)	
2771 4	(10-)	954.9+ 7	100 4	2586.7+x	(16^{+})	
3//1.4+X	(18)	481.8 J		3289.3+X	(1/)	
4105 O L v	(10^{+})	953.1 ⁺ /	22.5	2818.2+X	(10)	
4103.0+X	(19)	1008.9.3	100 5	3096.1+x	(10) (17^+)	
4271 6+x	(19^{-})	$500.2^{\ddagger}.7$	28.7	3771.4 + x	(18^{-})	
1271.017	(1))	982.0 3	100 7	3289.5+x	(10^{-})	
4589 6+x	(20^{+})	484 6 [‡] 7	19.5	4105.0+x	(19^{+})	
100010111	(=0))	1048.1 3	100 5	3541.5+x	(18^+)	
4720.2+x	(20^{-})	448.6 5	69 9	4271.6+x	(19 ⁻)	
		948.8 [‡] 7	100 9	3771.4+x	(18 ⁻)	
5185.0+x	(21^{-})	464.8 5	100 6	4720.2+x	(20^{-})	
		913.4 5	92 6	4271.6+x	(19 ⁻)	
5185.2+x	(21^{+})	595.6 5	32 7	4589.6+x	(20^+)	
5644 5 L v	(22^{-})	1080.2 5	100 / 60 /	4105.0+x 5185.0+x	(19^{+}) (21^{-})	
J044.JTX	(22)	924.2 5	100 4	4720.2 + x	(21^{-})	
5696 8+x	(22^{+})	511 7 77	30.9	5185.2 + x	(21^+)	
5070.0 TA	(22)	1107 1	100 9	4589.6+x	(21^{+}) (20^{+})	
6156.8+x	(23^{-})	512.4 5	55 6	5644.5+x	(22^{-})	
		971.8 5	100 6	5185.0+x	(21^{-})	
6658.1+x	(24 ⁻)	501.5 [‡] 7	30 5	6156.8+x	(23 ⁻)	
		1013.4 5	100 5	5644.5+x	(22 ⁻)	
6818.8+x	(24^{+})	1122.0 14	100	5696.8+x	(22^{+})	
7203.2+x	(25 ⁻)	545.0 [‡] 7		6658.1+x	(24^{-})	
		1046.5 5		6156.8+x	(23)	
7759.0+x	(26 ⁻)	555.8+ 7	11 6	7203.2+x	(25^{-})	
70/0 8 L v	(26^{+})	1100.8 14	100 0	6818 8 L V	(24)	
8282.7 + x	(20^{-})	523 7 5	11.6	7759.0+x	(2+) (26^{-})	
3202.7 TA	(27)	1079.5 14	100 6	7203.2+x	(25^{-})	
358.8+y	(9)	358.8 5	100	0.0+y	(7)	Q
489.7+y	(10)	130.9 5	100 7	358.8+y	(9)	D
	14.25	402.8 5	57 5	86.9+y	(9)	
732.6+y	(11)	242.9 3	100	489.7+y	(10)	
1040.0+y	(12)	314.0 3 371 6 3	100	1046.6 L	(11) (12)	
1410.2+y	(13)	5/1.0 5	100	10 4 0.0+y	(12)	

$\gamma(^{130}La)$ ((continued)
----------------------	-------------

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$
1841.2+y	(14)	423.0 3	100	1418.2+y	(13)
2305.6+y	(15)	464.4 <i>3</i>	100	1841.2+y	(14)
2807.9+y	(16)	502.3 5	100 9	2305.6+y	(15)
		966.7 5	18 2	1841.2+y	(14)
3340.0+y	(17)	532.1 5	100 10	2807.9+y	(16)
		1034.4 14	31 5	2305.6+y	(15)
3889.5+y	(18)	549.5 5	100 11	3340.0+y	(17)
		1081.6 14	44 11	2807.9+y	(16)
4462.0+y	(19)	572.5 5	100 13	3889.5+y	(18)
		1122.0 14	33 5	3340.0+y	(17)
5054.8+y	(20)	592.8 5	100 15	4462.0+y	(19)
		1165.3 <i>14</i>	92 15	3889.5+y	(18)
5638.0+y	(21)	583.2 5	100	5054.8+y	(20)
762.4+z	J+2	762.4	0.35 [#]	Z	J≈(16)
1613.9+z	J+4	851.5	0.80 <mark>#</mark>	762.4+z	J+2
2534.4+z	J+6	920.5	1.00 [#]	1613.9+z	J+4
3532.1+z	J+8	997.7	1.00 [#]	2534.4+z	J+6
4604.7+z	J+10	1072.6	1.00 [#]	3532.1+z	J+8
5753.0+z	J+12	1148.3	0.75 [#]	4604.7+z	J+10
6982.4+z	J+14	1229.4	0.65 [#]	5753.0+z	J+12
8301.0+z	J+16	1318.6	0.50 [#]	6982.4+z	J+14
9713.4+z	J+18	1412.4	0.40 [#]	8301.0+z	J+16

[†] For high-spin (J>3) values are adopted from ${}^{51}V({}^{82}Se,3n\gamma)$. Although, some E γ 's are more precisely quoted in (${}^{19}F,5n\gamma$), but the information is more complete in (82 Se,3n γ). Also, E γ 's from (19 F,5n γ) seem to be systematically higher by 0.5 to 1.5 keV as compared to those in (⁸²Se, $3n\gamma$). For the Chiral doublet partner of $\pi h_{11/2} \nu h_{11/2}$ band, E γ 's are from 2001Ko30.

^{\ddagger} The γ -ray peak is a part of an unresolved doublet.

[#] Relative intensity within the SD band.

[@] From $\gamma(\theta)$ in ¹¹⁶Cd(¹⁹F,5n γ), unless otherwise stated. Mult=d or D+Q is from $\Delta J=1$ and mult=Q for $\Delta J=2$, stretched (most likely E2) transition indicated by $\gamma(\theta)$.

& From ce data in ¹¹⁵In(¹⁸O,3n γ); $\Delta J=1 \gamma$ from $\gamma(\theta)$ in ¹¹⁶Cd(¹⁹F,5n γ).

^{*a*} Others: 6.8 9 in ¹¹⁶Cd(¹⁹F,5n γ); 24.8 15 in ¹¹⁵In(¹⁸O,3n γ).

^b Others: 30.4 21 in ¹¹⁶Cd(¹⁹F,5n γ); 58.7 24 in ¹¹⁵In(¹⁸O,3n γ).

^c Others: 84.6 in ¹¹⁶Cd(¹⁹F,5n γ); 65.7 in ¹¹⁵In(¹⁸O,3n γ). ^d Others: 66.6 in ¹¹⁶Cd(¹⁹F,5n γ); 56.3 in ¹¹⁵In(¹⁸O,3n γ). ^e Other: 127 *13* in ¹¹⁶Cd(¹⁹F,5n γ).

^f Other: 32 3 in 115 In(18 O,3n γ).

^g Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^h Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

¹³⁰₅₇La₇₃

9

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

Legend

0.0 8.7 min 1

¹³⁰₅₇La₇₃

Legend

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹³⁰₅₇La₇₃

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{130}_{57}$ La₇₃

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{130}_{57} La_{73}$

z

(21)

(19)

(17)

(15)

(13)

(11)

(9)

¹³⁰₅₇La₇₃