$^{51}V(^{82}Se,3n\gamma)$ 1989Go04,1989Go06,1989Go13

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 93, 33 (2001)	11-May-2001

1989Go04 and 1989Go06: E=290 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, excitation functions. 1989Go13: E=290 MeV. Measured γ , $\gamma\gamma$. Deduced SD band.

¹³⁰La Levels

E(level)	$J^{\pi \dagger}$	Comments
0+x	(1)	
5.1 + x 5	(4)	
43.1 + x 10	(2-)	
$88.4 + X^{\circ}$ /	(3)	J [*] : (6) In Adopted Levels.
$113.9 \pm x 4$ 150.3 \pm x 8	(5)	
160.3 + x.5	(3)	
$160.4 + x^a 5$	(4 ⁻)	J^{π} : (7 ⁻) In Adopted Levels.
$279.0 + x^{b}.5$	(5-)	
385.4+x ^c 4	(6^+)	J^{π} : (9 ⁺) In Adopted Levels.
456.3+x ^{<i>a</i>} 5	(6 ⁻)	
$522.9 + x^{d} 5$	(7^{+})	J^{π} : (10 ⁺) In Adopted Levels.
677.5+x ^b 6	(7 ⁻)	
$802.2 + x^{c} 5$	(8+)	
$947.0+x^{a}$ 6	(8 ⁻)	
$1048.5 + x^{a} 5$	(9+)	
1250.2+x ^b 6	(9-)	
1422.8+x ^c 6	(10^{+})	
$1597.3 + x^{a} 6$	(10 ⁻)	
$1748.5 + x^{a} 6$	(11^{+})	
1970.1+x ^b 7	(11^{-})	
$2194.1 + x^{c} 6$	(12^+)	
2384.4+x ^d 7	(12 ⁻)	
$2586.7 + x^{a} 6$	(13^{+})	
2818.2+x ⁰ 7	(13-)	
$3096.1 + x^{c} 7$	(14^+)	
$3289.5 + x^{a}$	(14)	
3541.5+x ^a 7	(15^{+})	
3771.4+x ^o 8	(15^{-})	
$4105.0+x^{\circ}$ /	(16^{-})	
$42/1.0+x^{-3}$ 0	(10)	
$4589.6 + x^{a}$ /	$(1/^{+})$	
$4/20.2 + x^{0} 8$	$(1^{7})^{-}$	
$5185.0+X^{\circ}$ 8	(18)	
5105.2 + x = 0	(10)	
$3044.3 + X^{\circ} \delta$	(19)	
$5090.8 + x^{4} I0$	(19')	
$6659.1 + x^{2}.0$	(20)	
$(0100.1+x^2)^{0}$	(21)	
$0818.8 + x^{\circ} 17$	(21^{+})	
1203.2+x- 10	(22)	

51 V(82 Se,3n γ)	1989Go04,1989Go06,1989Go13 (continued)
---	--

E(level)	$J^{\pi \dagger}$	E(level)	Jπ†	E(level)	$J^{\pi \dagger}$
7759.0+x ^b 10	(23 ⁻)	1841.2+y ^e 10	(14)	1613.9+z f	J+4
7949.8+x ^d 22	(23 ⁺)	2305.6+y ^e 10	(15)	2534.4+z ^f	J+6
8282.7+x ^{<i>a</i>} 11	(24 ⁻)	2807.9+y ^e 10	(16)	3532.1+z f	J+8
0.0+y [‡]	(7)	3340.0+y ^e 11	(17)	4604.7+z f	J+10
86.9+y [#] 9	(9)	3889.5+y ^e 12	(18)	5753.0+z ^f	J+12
358.8+y ^e 5	(9)	4462.0+y ^e 13	(19)	$6982.4 + z^{f}$	J+14
489.7+y [@] e 7	(10)	5054.8+y ^e 13	(20)	8301.0+z ^f	J+16
732.6+y ^e 8	(11)	5638.0+y ^e 14	(21)	9713.4+z ^f	J+18
1046.6+y ^e 9	(12)	zf	J≈(16) ^{&}		
1418.2+y ^e 9	(13)	762.4+z ^f	J+2		

¹³⁰La Levels (continued)

[†] From 1989Go04 and 1989Go06 based on their $\gamma(\theta)$ and $\gamma\gamma(\theta)$ data, and assigned band structures. The adopted $J^{\pi'}s$ for $\pi h_{11/2} \nu h_{11/2}$ and $\pi h_{11/2} \nu g_{7/2}$ bands, based on assignments by 1987Pa27, 2001Ko30 and 1996Li13, are higher by 3 units of spin.

 \ddagger y>700. This level decays solely to (6⁻) via unseen transitions.

[#] Decays to 802+x, (8⁺) through unidentified γ rays.

[@] Also decays to 677+x, (7⁻) through unidentified γ rays.

[&] From 1989Go13.

^{*a*} Band(A): $\pi h_{11/2} \nu g_{7/2}$, $\alpha = 0$.

^b Band(a): $\pi h_{11/2} \nu g_{7/2}$, $\alpha = 1$.

^{*c*} Band(B): $\pi h_{11/2} \nu h_{11/2}$, $\alpha = 0$.

^{*d*} Band(b): $\pi h_{11/2} \nu h_{11/2}$, $\alpha = 1$.

^e Band(C): Collective oblate band. Only 32% of the intensity of this band deexcites to other bands; 13% feeds the positive-parity band and 19% feeds the negative-parity band (1989Go06).

^f Band(D): SD band (1989Go13). Percent population=10 in ${}^{51}V({}^{82}Se,3n\gamma)$ (1989Go13).

$E_{\gamma}^{\dagger \ddagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Comments
46.4 5	<1	160.4+x	(4^{-})	113.9+x (5)	
72.0 5	6.2 2	160.4+x	(4^{-})	88.4+x (3 ⁻)
105.2 5	1.7 2	150.3+x	(5)	45.1+x	
106.4 5	4.0 3	385.4+x	(6^{+})	279.0+x (5 ⁻)
113.9 5	2.8 2	113.9+x	(5)	0+x	
118.7 <i>3</i>	55.2 <i>3</i>	279.0+x	(5 ⁻)	160.4+x (4 ⁻)
130.9 5	8.3 6	489.7+y	(10)	358.8+y (9)	
137.5 <i>3</i>	100	522.9+x	(7^{+})	385.4+x (6 ⁺)
177.2 <i>3</i>	63.5 9	456.3+x	(6 ⁻)	279.0+x (5 ⁻)
190.7 7	1.4 [@] 5	279.0+x	(5 ⁻)	88.4+x (3 ⁻) $Br(191/119)=2.5 9/97.5 9.$
221.2 3	41.1 7	677.5+x	(7^{-})	456.3+x (6 ⁻)
225.1 3	15.2 7	385.4+x	(6^{+})	160.3+x (4)	
235.1 7	>30 [#]	385.4+x	(6^{+})	150.3+x (5)	I_{γ} : from intensity balance.
242.9 <i>3</i>	15.1 7	732.6+y	(11)	489.7+y (10)
246.3 <i>3</i>	68.3 16	1048.5+x	(9 ⁺)	802.2+x (8 ⁺)
269.5 7	22.2 [@] 9	947.0+x	(8-)	677.5+x (7 ⁻)
271.5 3	55.8 22	385.4+x	(6^{+})	113.9+x (5)	
279.4 <i>3</i>	91 4	802.2+x	(8^+)	522.9+x (7 ⁺)

$\gamma(^{130}\text{La})$

Continued on next page (footnotes at end of table)

⁵¹V(⁸²Se,3nγ) 1989Go04,1989Go06,1989Go13 (continued)

$\gamma(^{130}\text{La})$ (continued)

$E_{\gamma}^{\dagger\ddagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
295.9 3	10.6 3	456.3+x	(6^{-})	160.4+x	(4^{-})	Br(296/177)=12.1 14/87.9 14.
303.2 3	19.9 5	1250.2+x	(9 ⁻)	947.0+x	(8-)	
314.0 <i>3</i>	16.9 <i>13</i>	1046.6+y	(12)	732.6+y	(11)	
325.7 <i>3</i>	31.7 13	1748.5+x	(11^{+})	1422.8+x	(10^{+})	
347.1 7	11.9 [@] 8	1597.3+x	(10^{-})	1250.2+x	(9 ⁻)	
358.8 5	7.0 6	358.8+y	(9)	0.0+y	(7)	
371.6 <i>3</i>	16.0 12	1418.2+y	(13)	1046.6+y	(12)	
372.8 7	12.6 [@] 8	1970.1+x	(11^{-})	1597.3+x	(10 ⁻)	
374.3 7	36 [@] 3	1422.8+x	(10^{+})	1048.5+x	(9^{+})	
380.3 <i>3</i>	22.4 10	385.4+x	(6^{+})	5.1+x	(4)	
385.4 5	7.3 5	385.4+x	(6^{+})	0+x		
392.6 <i>3</i>	15.9 8	2586.7+x	(13^{+})	2194.1+x	(12^{+})	
398.4 <i>3</i>	20.1 6	677.5+x	(7^{-})	279.0+x	(5 ⁻)	Br(398/221)=31.8 16/68.2 16.
402.8 5	4.7 4	489.7+y	(10)	86.9+y	(9)	
414.3 5	4.2 5	2384.4+x	(12^{-})	1970.1+x	(11-)	
416.9 5	<1	802.2+x	(8')	385.4+x	(6')	$Br(417/279)=3.5\ 21/96.5\ 21.$
423.0 3	13.1 10	1841.2+y	(14)	1418.2+y	(13)	
433.8 3	2.14 #	2818.2+X	(15)	2384.4+X	(12)	
445.4 7		3541.5+x	(15')	3096.1+x	(14')	
445.6 7	29 ^w 4	2194.1+x	(12^+)	1748.5+x	(11^+)	
448.6 5	8.4 6	4720.2+x	(17^{-})	42/1.6+x	(16^{-})	
459.4 5	5./0	5644.5+x	(19)	5185.0+x	(18)	
404.4 3	11.5 9	2303.0+y	(13)	1841.2+y	(14)	
404.0 J	9.07	3183.0+x 3280.5+x	(10) (14^{-})	4720.2+x	(17) (13^{-})	
471.55	3.04	3289.3+x 3771.4+x	(14^{-})	$32895 \pm x$	(13^{-})	
184.6.7	3.6° 0	4580.6+x	(13^{+})	4105 0 L v	(16^+)	
490.7 <i>3</i>	25.3 7	4389.0+x 947.0+x	(17) (8^{-})	4105.0+x 456.3+x	(10^{-})	Br(491/269)=53.3 11/46.7 11.
500.2 7	3.1 [@] 9	4271.6+x	(16 ⁻)	3771.4+x	(15 ⁻)	
501.5 7	2.2 [@] 5	6658.1+x	(21^{-})	6156.8+x	(20^{-})	
502.3 5	9.0 8	2807.9+y	(16)	2305.6+y	(15)	
509.5 7	#	3096.1+x	(14^{+})	2586.7+x	(13 ⁺)	
511.7 7	2.8 [@] 9	5696.8+x	(19^{+})	5185.2+x	(18^{+})	
512.4 5	4.5 6	6156.8+x	(20^{-})	5644.5+x	(19 ⁻)	
523.7 5	1.3 9	8282.7+x	(24 ⁻)	7759.0+x	(23 ⁻)	
525.7 <i>3</i>	33.7 15	1048.5+x	(9+)	522.9+x	(7^{+})	Br(526/246)=30.8 14/69.2 14.
532.1 5	5.9 6	3340.0+y	(17)	2807.9+y	(16)	
545.0 7	Ŧ	7203.2+x	(22 ⁻)	6658.1+x	(21 ⁻)	
549.5 5	3.1 4	3889.5+y	(18)	3340.0+y	(17)	
555.8 7	$0.3^{\textcircled{0}}2$	7759.0+x	(23 ⁻)	7203.2+x	(22 ⁻)	
563.5 5	8.5 10	4105.0+x	(16^+)	3541.5+x	(15^{+})	
572.5 5	4.0 5	4462.0+y	(19)	3889.5+y	(18)	D(572)(202)(40,12)(250,12)
5/2./ 3	33.4 9	1250.2+x	(9)	6//.5+x	(/)	$Br(5/3/303)=64.8 \ 13/35.2 \ 13.$
502 8 5	1.12 123	5054.8+y	(21)	2024.8+y	(20) (10)	
592.05	226	$5185.2 \pm v$	(20) (18^+)	$4580 6 \pm v$	(17^+)	
620.6 3	13.9 9	1422.8 + x	(10^+)	802.2+x	(8+)	Br(621/374)=28.3 19/71.7 19.
650.3 3	30.2 9	1597.3 + x	(10^{-})	947.0+x	(8 ⁻)	$Br(650/347) = 71.8 \ 15/28.2 \ 15.$
700.0 3	66 3	1748.5+x	(11^{+})	1048.5+x	(9 ⁺)	Br(700/326)=59.5 11/40.5 11.
719.9 3	31.9 10	1970.1+x	(11-)	1250.2+x	(9 ⁻)	$Br(720/373)=71.7 \ 16/28.3 \ 16.$
762.4	0.35 <mark>&</mark>	762.4+z	J+2	Z	J≈(16)	
771.3 <i>3</i>	21.5 12	2194.1+x	(12^{+})	1422.8+x	(10 ⁺)	Br(771/446)=42 3/58 3.
787.1 <i>3</i>	27.8 11	2384.4+x	(12 ⁻)	1597.3+x	(10 ⁻)	Br(787/414)=85.6 18/14.4 18.

Continued on next page (footnotes at end of table)

${}^{51}V({}^{82}Se,3n\gamma)$ 1989Go04,1989Go06,1989Go13 (continued)

$\gamma(^{130}$ La) (continued)

$E_{\gamma}^{\dagger\ddagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
838.2 3	42.6 20	2586.7+x	(13^{+})	1748.5+x	(11^{+})	Br(838/393)=76 4/24 4.
848.1 <i>3</i>	25.4 10	2818.2+x	(13-)	1970.1+x	(11 ⁻)	Br(848/434)=81.9 21/18.1 21.
851.5	$0.80^{\&}$	1613.9+z	J+4	762.4+z	J+2	
902.1 7	#	3096.1+x	(14^{+})	2194.1+x	(12^{+})	Br(902/510)=55 3/45 3.
905.1 7	17 [@] 3	3289.5+x	(14^{-})	2384.4+x	(12^{-})	Br(905/471)=85.3 23/14.7 23.
913.4 5	7.7 6	5185.0+x	(18-)	4271.6+x	(16 ⁻)	$Br(913/465) = 48 \ 3/52 \ 3.$
920.5	1.00 <mark>&</mark>	2534.4+z	J+6	1613.9+z	J+4	
924.2 5	9.6 13	5644.5+x	(19 ⁻)	4720.2+x	(17^{-})	Br(924/459)=59 3/41 3.
948.8 7	11.9 [@] 20	4720.2+x	(17-)	3771.4+x	(15 ⁻)	Br(949/449)=59 5/41 5.
953.1 7	#	3771.4+x	(15 ⁻)	2818.2+x	(13 ⁻)	
954.9 7	#	3541.5+x	(15^{+})	2586.7+x	(13^{+})	Br(955/445)=81 3/19 3.
966.7 5	1.6 2	2807.9+y	(16)	1841.2+y	(14)	Br(967/502)=14 10/85 10.
971.8 <i>5</i>	7.5 10	6156.8+x	(20^{-})	5185.2+x	(18^{+})	$Br(972/512) = 65 \ 4/36 \ 4.$
982.0 <i>3</i>	11.5 10	4271.6+x	(16 ⁻)	3289.5+x	(14^{-})	Br(982/500) = 78 6/22 6.
997.7	1.00	3532.1+z	J+8	2534.4+z	J+6	
1008.9 <i>3</i>	17.4 11	4105.0+x	(16^{+})	3096.1+x	(14^{+})	$Br(1009/563) = 75 \ 4/25 \ 4.$
1013.4 5	7.2 10	6658.1+x	(21^{-})	5644.5+x	(19 ⁻)	$Br(1013/501) = 77 \ 4/23 \ 4.$
1034.4 14	1.8 <i>3</i>	3340.0+y	(17)	2305.6+y	(15)	Br(1034/532)=25 7/75 7.
1046.5 5	4.8 10	7203.2+x	(22^{-})	6156.8+x	(20^{-})	
1048.1 <i>3</i>	18.5 12	4589.6+x	(17^{+})	3541.5+x	(15^{+})	$Br(1048/485) = 84 \ 4/16 \ 4.$
1072.6	1.00	4604.7+z	J+10	3532.1+z	J+8	
1079.5 14	2.4 10	8282.7+x	(24 ⁻)	7203.2+x	(22^{-})	Br(1079/524)=90 5/10 5.
1080.2 5	6.6 7	5185.2+x	(18^{+})	4105.0+x	(16^{+})	Br(1080/596) = 76 5/24 5.
1081.6 14	1.6 2	3889.5+y	(18)	2807.9+y	(16)	$Br(1082/549) = 31 \ 8/70 \ 8.$
1100.8 14	3.0 8	7759.0+x	(23 ⁻)	6658.1+x	(21^{-})	Br(1101/556) = 90 5/10 5.
1107 1	9.5 9	5696.8+x	(19^+)	4589.6+x	(17^{+})	Br(1107/512)=77 7/23 7.
1122.0 14	1.5 6	6818.8+x	(21^{+})	5696.8+x	(19 ⁺)	D (1100/570) 00 15/70 15
1122.0 14	1.3 2	4462.0+y	(19)	3340.0+y	(17)	$Br(1122/572)=28\ 15/72\ 15.$
1131.0 14	1.1 3	/949.8+x	(23^{+})	6818.8+x	(21^{+})	
1148.3	0.75 [°]	5753.0+z	J+12	4604.7+z	J+10	
1165.3 14	1.0 3	5054.8+y	(20)	3889.5+y	(18)	$Br(1165/593) = 48 \ 8/52 \ 8.$
1229.4	0.65	6982.4+z	J+14	5753.0+z	J+12	
1318.6	0.50	8301.0+z	J+16	6982.4+z	J+14	
1412.4	$0.40^{\&}$	9713.4+z	J+18	8301.0+z	J+16	

[†] From 1989Go04 and 1989Go06. For SD band, values are from 1989Go13. [‡] $\Delta(E\gamma)=0.3$ keV for I $\gamma>10$, 0.5 keV for I $\gamma<10$, 0.7 keV for doublets and 1.4 keV for weak high-energy (>1 MeV) transitions, based on general comments by 1989Go04 and 1989Go06.

[#] Doublet, Iγ not determined.
[@] Doublet, Iγ from branching ratio.

[&] Relative intensity within the SD band.

¹³⁰₅₇La₇₃

⁵¹V(⁸²Se,3nγ) 1989Go04,1989Go06,1989Go13

¹³⁰₅₇La₇₃

¹³⁰₅₇La₇₃

⁵¹V(⁸²Se,3nγ) 1989Go04,1989Go06,1989Go13

¹³⁰₅₇La₇₃

⁵¹V(⁸²Se,3nγ) 1989Go04,1989Go06,1989Go13

Band(C): Collective oblate band					
(21)		5638.0+y			
(20)	583	5054.8+y			
(19)	593 	4462.0+y			
(18)	572 22	3889.5+y			
(17)	550	3340.0+y			
(16) 10	532 34	2807.9+y			
(15)	502	67 <u>2305.6+y</u>			
(14)	464	1841.2+y			
(13)	423	1418.2+y			
(12)	372	1046.6+y			
(11)	314	732.6+y			
(10)	243	/ <u>489.7+y</u>			
(9)	=131	⁄ 358.8+y			

¹³⁰₅₇La₇₃

¹³⁰₅₇La₇₃