$^{130}\text{Cd}\,\beta^-$ decay (162 ms) 2003Di06

History							
Type	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	ENSDF	31-May-2008				

Parent: 130 Cd: E=0; J^{π} =0+; $T_{1/2}$ =162 ms 7; $Q(\beta^{-})$ =8.34×10³ 16; $\%\beta^{-}$ decay=100.0

2003Di06 (also 2003DiZW): Measured E γ , I γ , $\gamma\gamma$, $\beta\gamma$ coin, half-life using four large HPGe detectors and Δ E-E β telescopes. ¹³⁰Cd isotope produced by 1 GeV proton beam impinging on a Ta or W rod in close proximity to the UC_x-C target. Fast neutrons induce fission while the proton-rich isobaric spallation products are suppressed. A resonance-ionization laser ion source used to achieve chemical sensitivity for elements of of high ionization potentials. The data for gamma-ray energies, intensities and β feedings were obtained from 2003DiZW (priv. comm. from authors of 2003Di06, November 27, 2003).

2000Ka48 (also 2004KaZR): 130 Cd isotope tentatively identified in 238 U(p,F) reaction E=1 GeV, followed by separation with a chemically selective LASER ion source. Measured γ rays.

¹³⁰In Levels

E(level) [†]	$J^{\pi \#}$	$T_{1/2}$	Comments		
0	1(-)	0.32 s			
388.4 2	(3 ⁺)	<6 μs	$T_{1/2}$: from 2003HeZT. 2003Di06 quote τ <10 μ s from an article by the same authors as 2003HeZT in a conference proceedings.		
1170.3 <i>3</i>	$(0 \text{ to } 3^{-})$		J^{π} : 2003Di06 suggest 0 ⁻ or 1 ⁻ .		
1669.2 <i>1</i>	(1^{-})				
2120.2 2	1+		configuration= $\pi g_{9/2} \otimes \gamma_{7/2}$.		
2585.8 7	(0,1)		J^{π} : 2003Di06 suggest 0 ⁻ or 1 ⁻ .		
4407.4 6	(1^+)				
4631.1 <i>10</i>	(1^+)				
5098.1 [‡] <i>10</i>	(1^+)				
5196.1 [‡] <i>10</i>	(1^+)				
5390.8 [‡] 7	(1^{+})				

 $^{^{\}dagger}$ From least-squares fit to Ey's.

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger #}$	$\operatorname{Log} ft^{\dagger}$	Comments
$(2.95 \times 10^3 \ 16)$	5390.8	0.9‡	4.6	av E β =1223 75
$(3.14 \times 10^3 \ 16)$	5196.1	0.4^{\ddagger}	5.0	av E β =1314 76
$(3.24 \times 10^3 \ 16)$	5098.1	0.6^{\ddagger}	4.9	av E β =1360 76
$(3.71\times10^3\ 16)$	4631.1	0.3	5.5	av E β =1580 76
$(3.93 \times 10^3 \ 16)$	4407.4	1.0	5.0	av E β =1686 76
$(5.75 \times 10^3 \ 16)$	2585.8	0.1	6.8	av E β =2550 76
$(6.22 \times 10^3 \ 16)$	2120.2	70.2	4.1	av E β =2771 76
$(6.67 \times 10^3 \ 16)$	1669.2	5.8	5.3	av E β =2985 76
$(7.17 \times 10^3 ^{\bigcirc} 16)$	1170.3	< 0.7	>6.3	av E β =3222 76
(8.34×10 ³ <i>16</i>)	0	≈5	≈5.8	$I\beta^-$: -1.2 <i>19</i> from intensity balance. av $E\beta$ =3776 <i>76</i> $I\beta^-$: deduced by 2003Di06 from Gross theory of β decay.

 $^{^{130}\}text{Cd-Q}(\beta^-)$: 8344 +165–157; from β end-point energy of 6224 +165–157 (2003Di06) to 2120 level.

¹³⁰Cd-T_{1/2}: 2001Ha39 and 2001Pf04.

 $[\]dot{z}$ Neutron-unbound state; however γ decay is favored over the emission of low-energy neutrons due to angular-momentum considerations.

[#] From 'Adopted Levels'.

¹³⁰Cd β⁻ decay (162 ms) 2003Di06 (continued)

β^- radiations (continued)

- [†] From 2003DiZW. The total β feedings add to \approx 84% which does not include 3.6% from neutron emission; however about 12% feeding still remains unaccounted (evaluator's note).
- ‡ From γ -ray intensity only; does not include possible contribution due to emission of delayed neutrons from the neutron-unbound level.
- # Absolute intensity per 100 decays.
- [®] Existence of this branch is questionable.

γ (130In)

Iy normalization: Σ (Iy of γ's to 2120 level)=70.2; % β ⁻n=3.6 10. % β ⁻n is from 2001Ha39 and 2001Pf04. About 12% of the total β feeding remains unaccounted for.

A 1395-keV tentative γ ray reported by 2000Ka48 has not been confirmed in the work of 2003Di06, thus it is omitted here.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	$E_i(level)$	\mathtt{J}_{i}^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
388.7 5	4.0‡ 26	388.4	(3 ⁺)	0	1(-)	
451.0 2	88.6 <i>36</i>	2120.2	1+	1669.2	(1^{-})	
949.9 5	22.1 [‡] <i>33</i>	2120.2	1+	1170.3	$(0 \text{ to } 3^{-})$	
^x 1015.5 2	5.5 10					
^x 1138.4 4	1.7 3					E_{γ} , I_{γ} : doublet with a peak from ¹³⁰ Sb isomer decay.
1170.3 <i>3</i>	20.0 2	1170.3	$(0 \text{ to } 3^{-})$	0	1(-)	
^x 1314.4 2	2.5 2					
1669.2 <i>1</i>	100.0	1669.2	(1^{-})	0	$1^{(-)}$	
1731.8 <i>1</i>	4.4 4	2120.2	1+	388.4	(3^{+})	
2120.1 5	11.1 6	2120.2	1+	0	$1^{(-)}$	
2585.5 9	1.3 <i>3</i>	2585.8	(0,1)	0	1(-)	
2738.3 6	1.3 3	4407.4	(1^+)	1669.2	(1^{-})	
2804.9 <i>3</i>	1.1 2	5390.8	(1^+)	2585.8		
4407.0 10	0.5 1	4407.4	(1^+)	0	$1^{(-)}$	
4631.0 <i>10</i>	0.6 1	4631.1	(1^+)	0	$1^{(-)}$	
5098.0 10	1.1 3	5098.1	(1^{+})	0	$1^{(-)}$	
5196.0 <i>10</i>	0.7 2	5196.1	(1^+)	0	1 ⁽⁻⁾	
5391.0 <i>10</i>	0.4 2	5390.8	(1^+)	0	1(-)	

[†] From 2003DiZW. The authors mention that they have indication for two additional gamma rays above 5 MeV, but these are considered as tentative since these were seen only in one of three detectors.


¹³⁰Cd decays by β ⁻n also with % β ⁻n=3.6 10; a γ ray at 315.3 4 (I γ =3.3 6 relative to 100 for 1669.2 γ) has been assigned to ¹³⁰Cd β ⁻n decay to ¹²⁹In.

[‡] Uncertainty is large since the line is unresolved from a peak in ¹³⁰In decay.

[#] For absolute intensity per 100 decays, multiply by ≈ 0.56 .

 $^{^{}x}$ γ ray not placed in level scheme.

¹³⁰Cd β^- decay (162 ms) 2003Di06

