Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh	ENSDF	31-May-2008		

 $S(p) = -1028 \ 15; \ Q(\alpha) = 2.9 \times 10^3 \ syst$ 2012Wa38

Note: Current evaluation has used the following Q record 11990 calc -1028 15 3210 syst 2003Au03,1997Mo25. $\Delta Q(\alpha) = 710$ (syst,2003Au03).

Q(\varepsilon p)=11730 640 (syst, 2003Au03).

S(n) from 1997Mo25, S(p) and Q(α) from 2003Au03.

2004Da04 (also 2005Se21,2002Ma61): ¹³⁰Eu produced in ⁵⁸Ni(⁷⁸Kr,p5n) reaction at E(⁷⁸Kr)=425 MeV, ATLAS accelerator

facility. Recoil fragments were analyzed using Argonne Fragment Mass Analyzer (FMA) and implanted into a double-sided silicon strip (DSSD) detector. Other detectors used were a large silicon detector to veto positron and β delayed proton events and an array of four silicon detectors to veto events for particles emerging from the front surface of the DSSD detector. Measured proton spectra, isotopic half-life and production cross section. Structure calculations were used to deduce deformation and probable configuration. 1983La27: search for ¹³⁰Eu proved negative in ⁹²Mo(⁵⁸Ni,X) reaction.

Additional information 1.

¹³⁰Eu Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments	
0	(1+)	0.90 ms +49–29	%p≈100 E(level): it is assumed that the observed activity corresponds to the g.s. T _{1/2} : from timing of proton spectra (2004Da04). Earlier value from the same group: 0.90 ms +61-26 (2002Ma61). %p ≈ 100 from half-life measured by 2004Da04 and calculated β decay half-life of 49 ms (1997Mo25). Measured proton energy=1020 <i>15</i> (2004Da04). Measured production cross section ≈ 9 nb (large uncertainty). J ^π : Proposed configuration=π3/2[411]⊗v1/2[411], K^{π} =1 ⁺ ,2 ⁺ with preference for K^{π} =1 ⁺ from Gallagher-Moszkowski rules. It should be noted that the measured half-life agrees better for K=2 in model calculations. This configuration is based on following considerations: the assumption of spherical shape and WKB calculations predict half-life of 30 µs for d _{5/2} and 6 ms for g _{7/2} proton emission, both in disagreement with the measured half-life. In analogy with the deformed shape found for ¹³¹ Eu through features of its proton decay, ¹³⁰ Eu is also assumed to have a deformation with $\beta_2 \approx 0.3$. Assuming the proton configuration of 3/2[411] (as for ¹³¹ Eu), calculations were done by 2004Da04 with the considerations of neutron in 1/2[411] or 7/2[523] orbital. Best agreement with the measured half-life was found for K^{π} =2 ⁺ , 1 ⁺ ; other possible choices of K^{π} =2 ⁻ and 5 ⁻ for 7/2[523] neutron orbital were in disagreement.	