History										
	Туре		Author	Citation	Literature Cutoff Date					
		Full Eval	luation	Balraj Singh	NDS 93,33 (2001)	11-May-2001				
$Q(β^-)=362 \ 9; \ S(n)=7472 \ 10; \ S(p)=5493 \ 9; \ Q(α)=-1413 \ 10$ Note: Current evaluation has used the following Q record 369 Mass measurement: 1999Am05, 1990St25. Isotope shifts, Δ <r<sup>2>: 1987Al25, 1978Hu08.</r<sup>										
¹³⁰ Cs Levels										
Additional information 1.										
Cross Reference (XREF) Flags										
				A ¹³⁰ Cs B ¹²⁴ Sn C ¹²⁷ I(a D ¹²⁹ Xe	IT decay (3.46 min) $({}^{10}B,4n\gamma),{}^{128}Te({}^{6}Li,4n\gamma),{}^{128}Te({}^{6}Li,4n\gamma),{}^{2}({}^{3}He,d)$	ηγ)				
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF			Comments				
0.0 80.37 7 131.54 6 148.35 7 163.25 <i>11</i>	2+ 2+ 2- 5-	3.46 min <i>6</i>	ABCD ABC ABCD ABC ABC	${}^{\text{\phi}}\beta^{-}=1.6; \ \%\varepsilon + \%\beta^{+}=98.4}{\mu=+1.460 \ 7 \ (1989 \text{Ra}17, 1981 \text{Th}06)} \\ Q=-0.059 \ 6 \ (1989 \text{Ra}17, 1981 \text{Th}06) \\ \%\beta^{+}: \ \text{from } I\beta^{+}/I\beta^{-}=27.6 \ (1952 \text{Sm}41) \ \text{and theoretical } \varepsilon/\beta^{+} \ (1971 \text{Go}40). \\ \mu, Q: \ \text{from LASER spectroscopy } \ (1981 \text{Th}06). \ \text{Other: } \mu=+1.466 \ 15 \ \text{from atomic beam } (1977 \text{Ek}02, 1978 \text{Ek}05). \\ J^{\pi}: \ \text{atomic beam } (1956 \text{Ni}16, 1958 \text{Ni}27); \ L(^3 \text{He}, d)=2(+0) \ \text{from } 1/2^{+}. \\ T_{1/2}: \ \text{from } 1981 \text{Ha}09. \ \text{Others: } 29.11 \ \text{min } 12 \ (1967 \text{Wa}11), 29.9 \ \text{min } 1 \\ (1968 \text{Fe}06), \ 1966 \text{Gf}01, \ 1952 \text{Sm}41, \ 1950 \text{Fi}16. \\ J^{\pi}: \ \Delta J=1, \ \text{M1 } \gamma \ \text{to } 1^{+}; \ \text{gr} \ \text{from } 5^{-}. \\ J^{\pi}: \ \Delta J=1, \ \text{M1 } \gamma \ \text{to } 1^{+}; \ \gamma \ \text{from } 5^{-}. \\ J^{\pi}: \ \Delta J=1, \ \text{El } \gamma \ \text{to } 1^{+}; \ \gamma \ \text{from } 5^{-}. \\ J^{\pi}: \ \Delta J=1, \ \text{El } \gamma \ \text{to } 1^{+}; \ \gamma \ \text{from } 5^{-}. \\ J^{\pi}: \ \Delta J=1, \ \text{El } \gamma \ \text{to } 1^{+}; \ \gamma \ \text{from } 5^{-}. \\ J^{\pi}: \ \Delta J=1, \ \text{El } \gamma \ \text{to } 1^{+}; \ \gamma \ \text{from } 5^{-}. \\ \% \ \text{H}=99.84 \ 2; \ \%\varepsilon + \%\beta^{+}=0.16 \ 2 \\ \mu=+0.629 \ 4 \ (1989 \text{Ra}17, 1981 \text{Th}06) \\ Q=+1.45 \ 5 \ (1989 \text{Ra}17, 1981 \text{Th}06) \\ Q=+1.45 \ 5 \ (1989 \text{Ra}17, 1981 \text{Th}06) \\ \mu, Q: \ \text{from LASER spectroscopy } (1981 \text{Th}06). \ \text{Other: } \mu=0.631 \ 10 \ \text{from atomic beam } (1977 \text{Ek}02). \\ T_{1/2}: \ \text{from } 1983 \text{We}07. \ \text{Other: } 3.7 \ \text{min } (1977 \text{Ek}02). \\ T_{1/2}: \ \text{from } 1983 \text{We}07. \ \text{Other: } 3.7 \ \text{min } (1977 \text{Ek}02). \\ T_{1/2}: \ \text{from } 1983 \text{We}07. \ \text{Other: } 3.7 \ \text{min } (1977 \text{Ek}02). \\ T_{1/2}: \ \text{from } 1983 \text{We}07. \ \text{Other: } 3.7 \ \text{min } (1977 \text{Ek}02). \\ T_{1/2}: \ \text{from } 1983 \text{We}07. \ \text{Other: } 3.7 \ \text{min } (1977 \text{Ek}02). \\ T_{1/2}: \ \text{from } 1983 \text{We}07. \ \text{Other: } 3.7 \ \text{min } (1977 \text{Ek}02). \\ T_{1/2}: \ \text{from } 1983 \text{We}07. \ \text{Other: } 3.7 \ \text{min } (1977 \text{Ek}02). \\ T_{1/2}: \ \text{from } 1983 \text{We}07. \ \text{Other: } 3.7 \ \text{min } (1977 \text{Ek}02). \\ T_{1/2}: \ \text{from } 1983 \text{We}07. \ \text{Other: } 3.7 \ $						
170.49 8 253.87 10 270.20 11 278.80 10 314.52 11 318.1 1 375.60 ^{&} 15 432.13 14 530.2 4 535.0 4 565.50 [@] 17	(≤ 3) (≤ 4) $(1^+, 3^+)$ $(6)^-$ (1,3) $(7)^-$ (1 to 4) (8^-)		BC BC BC C BC BC BC C B C B	E3-M1 ca: J^{π} : γ 's to 1 ⁺ J^{π} : γ to 2 ⁺ . J^{π} : ΔJ =1, (M J^{π} : ΔJ =1, M J^{π} : ΔJ =(1) γ J^{π} : ΔJ =1, M J^{π} : γ 's to 2 ⁺ J^{π} : γ to (1 ⁺ , J^{π} : ΔJ =(1), (Scade to 1 ⁺ . and 2 ⁺ . (11+E2) γ to 2 ⁺ . 1+E2 γ to 5 ⁻ . γ to 2 ⁺ . (1(+E2) γ to (6) ⁻ . and (3). 3 ⁺). (M1+E2) γ to (7) ⁻ .					
618.12 ^{x} 24 638.2 3	(8) ⁻		B C	J^{π} : $\Delta J=1$, M J^{π} : γ to $(1^+,$	$1+E2 \gamma$ to $(7)^{-}$. 3^{+}).					

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹³⁰Cs Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
688.35 21		BC	J^{π} : γ to $(1^+, 3^+)$.
878.26 [@] 25	(9 ⁻)	BC	J^{π} : $\Delta J=1$, M1+E2 γ to (8 ⁻).
954.3 4		BC	
962.1 4		BC	
974.8+ 4	(9+)	BC	J^{π} : $\Delta J=1$, E1 γ to (8 ⁻).
997.25 ^{&} 23 1050.4 4	(9 ⁻)	BC C	J^{π} : ΔJ=(2) γ to (7) ⁻ ; ΔJ=1 γ to (8) ⁻ .
1126.5 [‡] 4	(10^{+})	BC	J^{π} : $\Delta J=1$, M1(+E2) γ to (9 ⁺).
1172.1 [@] 3 1242.94	(10 ⁻)	BC BC	J^{π} : ΔJ=1, M1+E2 γ to (9 ⁻); ΔJ=2 γ to (8 ⁻).
1265.4 <mark>&</mark> 3	(10 ⁻)	В	J^{π} : $\Delta J=2 \gamma$ to (8) ⁻ .
1479.8 [‡] 5	(11^{+})	В	J^{π} : $\Delta J=1$, M1+E2 γ to (10 ⁺).
1512.9 [@] 4	(11 ⁻)	В	J^{π} : $\Delta J=2 \gamma$ to (9 ⁻).
1673.8 [#]	(11^{+})	В	
1770.0 [‡] 5	(12^{+})	В	J ^π : ΔJ=1, M1+E2 γ to (11 ⁺); γ to (10 ⁺).
1805.6 <mark>&</mark> 4		В	J^{π} : γ to (9 ⁻).
1960.7 [@] 4	(12^{-})	В	$J^{\pi}: \Delta J=(2) \gamma \text{ to } (10^{-}).$
2074.8 [#]	(12^{+})	В	
2086.1 ^{&} 4	(12^{-})	В	J^{π} : γ to (10 ⁻).
2187.0 [‡] 5	(13 ⁺)	В	J^{π} : γ' s to (11 ⁺) and (12 ⁺).
2309.6 [@] 5		В	J^{π} : γ to (11 ⁻).
2446.8 [#]	(13+)	В	
2613.5 [‡] 6	(14+)	В	J^{π} : $\Delta J=1 \gamma$ to (13 ⁺).
2796.6 [#] 6	(14^{+})	В	J^{π} : γ to (13 ⁺).
2897.6 [@] 5		В	J^{π} : γ to (12 ⁻).
3082.5 [‡]	(15^{+})	В	
3249.8 [#]	(15 ⁺)	В	
3547.5 [‡]	(16 ⁺)	В	
4040.5 [‡]	(17 ⁺)	В	
	```		

[†] For levels built on the 5⁻ isomer at 163.2, 1991Sa25 assume that the 97-115 cascade feeds this isomer directly, although they cannot rule out the possibility of an undetected low-energy transition at the bottom of this cascade.

[‡] Band(A):  $\Delta J=1$  band based on 9⁺. Possible configuration= $\nu h_{11/2}\pi h_{11/2}$ . See also comment for the band based on (11⁺).

[#] Band(a):  $\Delta J=1$  band based on (11⁺). This band is assigned (2001St04) as the sideband partner (chiral doublet structure) of  $vh_{11/2}\pi h_{11/2}$  configuration. Similar doublet bands are found (2001St04,2001He15) in ¹³²La, ¹³⁴Pr, ¹³⁶Pm and ¹³⁸Eu.

^(a) Band(B):  $\Delta J=1$  band based on (8⁻). Possible configuration= $\nu h_{11/2}\pi d_{5/2}$ .

& Band(C):  $\Delta J=1$  band based on (7⁻). Possible configuration= $vh_{11/2}\pi g_{7/2}$ .

Adopted Levels, Gammas (continued)											
$\gamma$ ⁽¹³⁰ Cs)											
E _i (level)	$\mathbf{J}_i^{\pi}$	$E_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	$\delta^{\ddagger}$	α [@]	Comments			
80.37	2+	80.45 10	100	0.0 1+	M1		1.703	$\alpha(K) = 1.459; \ \alpha(L) = 0.1941; \ \alpha(M) = 0.0395; \ \alpha(N+) = 0.01036$			
131.54	2+	51.18 5	100 5	80.37 2+	M1		6.34	$\alpha(K) = 5.43; \ \alpha(L) = 0.726; \ \alpha(M) = 0.1481; \ \alpha(N+) = 0.0387$			
		131.50 7	18.4 15	0.0 1+	M1		0.420	$\alpha(\mathbf{K}) = 0.360; \ \alpha(\mathbf{L}) = 0.0477; \ \alpha(\mathbf{M}) = 0.00971; \ \alpha(\mathbf{N}+) = 0.00255$			
148.35	2-	148.35 7	100	0.0 1+	E1		0.0734	$\alpha(K) = 0.0631; \alpha(L) = 0.00822; \alpha(M) = 0.00166; \alpha(N+) = 0.00042$			
163.25	5-	14.9 <i>3</i>	0.00038 [#] 6	148.35 2-	[M3]		2.2×10 ⁶ 3	$\alpha$ (L)=1.635×10 ⁶ ; $\alpha$ (M)= 4.26×10 ⁵ B(M3)(W.u.)=0.075 4			
		31.5 3	0.54 [#] 6	131.54 2+	[E3]		1.50×10 ⁴ 9	$\alpha(L)=1.141\times10^4$ ; $\alpha(M)=2.73\times10^3$ B(E3)(Wu)=0.0068 4			
		82.9 1	100 6	80.37 2+	E3		59.4	$\alpha(\text{K}) = 11.43; \ \alpha(\text{L}) = 37.4; \ \alpha(\text{M}) = 8.45; \ \alpha(\text{N}+) = 2.136$ $\alpha(\text{K}) = 0.00145; \ \alpha(\text{M}) = 0.00145; \\alpha(\text{M}) = 0.0014; \\alpha(\text{M}) =$			
170.49	(≤3)	90.2 1	<83	80.37 2+				B(E3)(w.u.)=0.00145 9			
	. ,	170.5 1	100 20	0.0 1+							
253.87	(≤4)	83.4 1	100.00	170.49 (≤3)							
270.20	$(1 \pm 2 \pm)$	173.5 1	100 20	$80.37 2^+$				$\Lambda = 0.28.6$			
270.20	(1,5)	130.0 1	100 20	151.54 2	$(\mathbf{M}1 + \mathbf{E}2)$	0.06.2		$A_2 = -0.28 \ 0.$			
278 80	$(6)^{-}$	189.9	< 344	$80.37 2^{\circ}$ 163.25 5 ⁻	(M1+E2) M1+E2	-0.062					
314.52	(1,3)	44.3 1	<36	$270.20 (1^+.3^+)$	WIT+L2	-0.00 2					
011102	(1,0)	60.6 1	<36	253.87 (<4)							
		183.2 <i>I</i>	100 20	$131.54 2^+$							
318.1		147.6 <i>1</i>	100	170.49 (≤3)							
375.60	(7)-	96.8 <i>1</i>	100	278.80 (6)-	M1(+E2)	-0.02 2					
432.13	(1 to 4)	117.6 1	88 18	314.52 (1,3)							
520.0		300.93	100 20	131.54 2							
530.2		$260.0 \times 3$	100	2/0.20 (1',3')							
555.0	$(0^{-})$	180.0 1	100	310.1	$(\mathbf{M}1 + \mathbf{E}2)$	0.06.2					
505.50 618.12	$(8)^{-}$	189.9	100	$3/3.00 (7)^{-1}$	(M1+E2) M1+E2	-0.06 2 -0.09 2					
638.2	(0)	368 1 3	100	$270\ 20\ (1^+\ 3^+)$	WIT+L2	-0.09 2					
688.35		256.3 3	<125	432.13 (1 to 4)							
		373.8 <i>3</i>	<125	314.52 (1,3)							
		418.1 3	100 20	270.20 (1+,3+)							
878.26	(9 ⁻ )	260.0 ^{&amp;} 3	<57	618.12 (8)-							
		312.6 3	100 20	565.50 (8-)	M1+E2	-0.18 3					
954.3		522.2 <i>3</i>	100	432.13 (1 to 4)							

L

# $\gamma(^{130}Cs)$ (continued)

$E_i$ (level)	$\mathbf{J}_i^{\pi}$	$E_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger}$	$E_f$	$\mathbf{J}_{f}^{\pi}$	Mult. [‡]	$\delta^{\ddagger}$
962.1		530.0 3	100	432.13	(1  to  4)		
974.8	$(9^{+})$	409.3 3	100	565.50	(8-)	E1	
997.25	(9-)	379.2 3	100 20	618.12	(8)-	D+Q	-0.28 6
		431.9 <i>3</i>	<100	565.50	(8-)		
		621.7 <i>3</i>	<100	375.60	$(7)^{-}$	(Q)	
1050.4		618.2 <i>3</i>	100	432.13	(1 to 4)		
1126.5	$(10^{+})$	151.7 <i>1</i>	100	974.8	$(9^{+})$	M1(+E2)	-0.03 3
1172.1	$(10^{-})$	293.9 <i>3</i>	<36	878.26	(9-)	M1+E2	-0.2 1
		606.6 <i>3</i>	100 20	565.50	(8 ⁻ )	Q	
1242.9		554.6 <i>3</i>	100	688.35			
1265.4	$(10^{-})$	268.4 <i>3</i>	<71	997.25	(9 ⁻ )		
		386.8 <i>3</i>	<71	878.26	(9 ⁻ )		
		647.3 <i>3</i>	100 20	618.12	(8)-	Q	
1479.8	$(11^{+})$	353.4 <i>3</i>	100	1126.5	$(10^{+})$	M1+E2	+0.03 2
1512.9	$(11^{-})$	340.8 <i>3</i>	<83	1172.1	$(10^{-})$		
		634.7 <i>3</i>	100 20	878.26	(9 ⁻ )	Q	
1673.8	$(11^{+})$	547		1126.5	$(10^{+})$		
		699		974.8	(9 ⁺ )		
1770.0	$(12^{+})$	290.3 <i>3</i>	100 20	1479.8	$(11^{+})$	M1+E2	-0.11 3
		643.4 <i>3</i>	69 14	1126.5	$(10^{+})$		
1805.6		808.3 <i>3</i>		997.25	(9 ⁻ )		
1960.7	$(12^{-})$	788.6 <i>3</i>	100	1172.1	$(10^{-})$	(Q)	
2074.8	$(12^{+})$	401		1673.8	$(11^{+})$		
		595		1479.8	$(11^{+})$		
2086.1	$(12^{-})$	820.7 <i>3</i>	100	1265.4	$(10^{-})$		
2187.0	$(13^{+})$	416.9 3	100 20	1770.0	$(12^{+})$		
		707.2 3	86 17	1479.8	$(11^{+})$		
2309.6		796.6 3	100	1512.9	$(11^{-})$		
2446.8	$(13^{+})$	372		2074.8	$(12^{+})$		
		677		1770.0	$(12^{+})$		
0.610.5	(1.4+)	773		1673.8	$(11^{+})$	<b>D</b>	0.07.5
2613.5	$(14^{+})$	426.5 3		2187.0	$(13^{+})$	D+Q	-0.075
0706 6	(1.4+)	843		1770.0	$(12^{+})$		
2796.6	(14')	350		2446.8	$(13^{+})$		
		609.6 <i>3</i>		2187.0	$(13^{+})$		
2007 (		122		2074.8	$(12^{+})$		
2897.6	(15+)	936.9 3 460		1960.7	(12)		
3082.5	(15')	409		2013.3	(14')		
2240.8	(15+)	895		2187.0	(15')		
3249.8	(15)	433		2/90.0	(14')		
2517 5	$(16^{+})$	8U3 024		2440.8 2612.5	$(13^{\circ})$		
JJ4/.J	(10')	934		2013.3	(14.)		

4

# $\gamma$ (¹³⁰Cs) (continued)

$$\frac{\mathrm{E}_{i}(\mathrm{level})}{4040.5} \quad \frac{\mathrm{J}_{i}^{\pi}}{(17^{+})} \quad \frac{\mathrm{E}_{\gamma}^{\dagger}}{493^{d}} \quad \frac{\mathrm{E}_{f}}{3547.5} \quad \frac{\mathrm{J}_{f}^{\pi}}{(16^{+})} \\ 958 \quad 3082.5 \quad (15^{+})$$

[†] From IT decay for gammas from levels below 165. From ( ${}^{10}B,4n\gamma$ ),( ${}^{6}Li,4n\gamma$ ) if a level is populated in both the in-beam reactions. [‡] From  ${}^{130}Cs$  IT decay for gammas from levels up to 163. For gammas from higher levels, the assignments are from ( ${}^{10}B,4n\gamma$ ), ${}^{128}Te({}^{6}Li,4n\gamma)$ . [#] From I( $\gamma$ +ce) and  $\alpha$  in  ${}^{130}Cs$  IT decay.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed.

^{*a*} Placement of transition in the level scheme is uncertain.

Legend

## Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$  Decay (Uncertain)



¹³⁰₅₅Cs₇₅



Level Scheme (continued)

Intensities: Relative photon branching from each level

¹³⁰₅₅Cs₇₅-7

From ENSDF



![](_page_7_Figure_5.jpeg)