(HI,xnγ) **1984To10**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 93, 33 (2001)	11-May-2001

See also ${}^{100}Mo({}^{34}S,4n\gamma)$:SD (1998Se10,1997Wi02,1997Pa42) for SD band measurements.

1984To10: ¹¹⁶Sn(¹⁸O,4n γ), ¹¹⁷Sn(¹⁶O,3n γ), ¹¹⁸Sn(¹⁶O,4n γ) E=73-85 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, $\gamma\gamma(\theta)$, $\gamma\gamma(\theta)$, $\gamma\gamma(t)$, lifetimes by Doppler-shift attenuation method, recoils.

1984Tw01 (also 1982No02,1983No07,1983No09): 100 Mo(34 S,4n γ) E=150 MeV. Measured E γ , $\gamma\gamma$. Deduced higher members of g.s. and negative parity bands and other features of the yrast band.

2000PaZZ: ¹⁰⁰Mo(³⁴S,4n γ) E=155 MeV. Measured E γ , I γ , $\gamma\gamma$ (triples and quadruples), $\gamma\gamma(\theta)$ (DCO), $\gamma(\text{lin pol})$ using EUROGAM 2 array. Preliminary report; full details are not yet available.

Additional information 1.

Earlier γ -ray data:

1974De12: ¹¹⁸Sn(¹⁶O,4n γ) E=68-76 MeV. Measured E γ , $\gamma(\theta)$, $\gamma\gamma$, lifetimes by recoil-distance Doppler shift method. Eight γ rays reported in the g.s. band.

1970Sm05, 1973Wy01 (also 1971WyZW): ¹³⁰Ba(α ,4n γ) E=62-64 MeV. Measured E γ , I γ , ce. Four γ rays reported in the g.s. band.

1968Wa14: ¹¹⁸Sn(¹⁶O,4n γ) E=80 MeV, ¹¹⁴Cd(²⁰Ne,4n γ) E=85 MeV. Measured E γ , I γ , $\gamma(\theta)$. Four γ rays reported in g.s. band. Lifetime measurements:

1999K111: ¹¹⁰Pd(²⁸Si,a4ng) E=125 MeV. Measured lifetimes of 2⁺ and and 4⁺ members of the g.s. band by recoil-distance Doppler-shift method.

1999Io02: ¹¹⁶Sn(¹⁶O,2n γ), ¹¹⁷Sn(¹⁶O,3n γ) and ¹¹⁸Sn(¹⁶O,4n γ) E=70 MeV. Measured quadrupole moment and lifetime of 7⁻ isomer at 2454 by TDPAD method.

1992De28: ${}^{98}Mo({}^{36}S,4n\gamma)$ E=150 MeV. Measured lifetimes by recoil- distance Doppler shift method.

1990Ti08: ⁹⁸Mo(³⁶S,4ny) E=143-150 MeV. Measured lifetimes by line-shape analysis.

1983No09: 100 Mo(34 S,4n γ) E=150 MeV. Measured lifetimes by DSA.

1977Hu10: ¹¹⁸Sn(¹⁶O,4n γ) E=76 MeV. Measured lifetimes by recoil-distance Doppler shift method.

1975Wa14 (also 1974WaZS): ¹¹⁰Pd(²⁴Mg,4nγ) E=103 MeV, ¹¹⁵In(¹⁹F,4nγ) E=86 MeV. Measured lifetimes by recoil-distance Doppler shift method.

1975Bu08: ¹¹⁸Sn(¹⁶O,4n γ) E=82 MeV. Measured lifetime by recoil-distance Doppler shift method.

Others:

1996Sa03: ¹⁰⁰Mo(³⁴S,4n γ) E=140 MeV. Measured $\gamma\gamma$ and γ ce coin to estimate E0 components in Δ J=0, $\Delta\pi$ =no transitions. 1988Ja05: ⁵⁸Ni(⁷⁸Se,X) E=300 MeV. Measured γ (recoil) coin, deduced evidence for ¹³⁰Ce.

Energy-energy correlation measurements: 1987Le01, 1985Lo06, 1985Je03, 1984Tw01, 1984Hi02, 1981Bi02. The level scheme is mainly from 1984To10.

¹³⁰Ce Levels

Quasiparticle nomenclature: A: $\pi h_{11/2} 3/2[541]$, $\alpha = -1/2$. B: $\pi h_{11/2} 3/2[541]$, $\alpha = +1/2$. C: $\pi h_{11/2} 1/2[550]$, $\alpha = -1/2$. D: $\pi h_{11/2} 1/2[550]$, $\alpha = +1/2$. E: $\pi d_{3/2} 1/2[420]$, $\alpha = +1/2$. F: $\pi d_{3/2} 1/2[420]$, $\alpha = -1/2$. a: $\nu h_{11/2} 7/2[523]$, $\alpha = -1/2$. b: $\nu h_{11/2} 7/2[523]$, $\alpha = +1/2$. e: $\nu g_{7/2} 7/2[404]$, $\alpha = +1/2$. f: $\nu g_{7/2} 7/2[404]$, $\alpha = -1/2$.

Continued on next page (footnotes at end of table)

_

(HI,xnγ) **1984To10** (continued)

¹³⁰Ce Levels (continued)

E(level)	J^{π}	T _{1/2}	Comments
0.0‡	0^{+}		
253.98 [‡] 19	2+	143 ps 6	T _{1/2} : weighted average of 125 ps <i>10</i> (1984To10), 145 ps <i>10</i> (1977Hu10), 146 ps <i>6</i> (1975Bu08), 156 ps <i>13</i> (1974De12).
710.4 [‡] 3	4+	4.3 ps +5-3	T _{1/2} : from RDDS (1992De28). Others (RDDS): 5.1 ps 6 (1984To10), 5.0 ps 4 (1977Hu10), 5.4 ps 16 (1974De12).
834.6 [#] 3	2+		
1322.6 [#] 4	4+		
1323.9 [‡] 3	6+	0.87 ps 7	T _{1/2} : from RDDS (1992De28). Others: 1.80 ps <i>14</i> (1984To10), 1.9 ps <i>6</i> (1977Hu10), 1.7 ps <i>8</i> (1974De12).
1897.4 [#] 4	6+		
1954.6 ^{&} 4	5-		
2052.8 [‡] 4	8+	0.24 ps 7	$T_{1/2}$: from RDDS (1992De28). Others (RDDS):<0.6 ps (1984To10), \leq 0.7 ps (1977Hu10,1974De12,1975Wa14).
2313.0 ^{&} 4 2333.1 5	7-	23 ps 3	T _{1/2} : from RDDS (1984To10).
2380.8 [@] 4	6-		
2453.4 ^{<i>a</i>} 4	7-	100 ns 8	Q=1.77 21 (1999Io02) T _{1/2} : from γ (t). Average of 92 ns 3 (1999Io02) and 109 ns 3 (1984To10). Q: TDPAD method.
2560.4 [#] 5	8+		
2642.2 ^b 5	8-		
2644.3 [@] 4	8-		
2760.7 ^{&} 4	9-	2.8 ps 14	T _{1/2} : from RDDS (1984To10).
2808.9 [‡] 4	10+	0.42 ps 10	$T_{1/2}$: from RDDS (1992De28). Others (RDDS): 0.62 ps 14 (1984To10), 0.8 ps 4 (1977Hu10),≈1.0 ps (1975Wa14).
2958.2 ^{<i>a</i>} 5	9-		
3071.4 [@] 4	10-	5.2 ps 10	T _{1/2} : from RDDS (1984To10). Additional information 2.
3296.3 [#] 7	10^{+}		
3311.8 [‡] 5	12+	2.84 ps 17	T _{1/2} : from RDDS (1992De28). Others (RDDS): 1.3 ps 3 (1984To10), 5.0 ps 9 (1977Hu10), 4.1 ps 10 (1974WaZS).
3316.6 ^b 6	10-		
3319.6 2 5	11-	<1.4 ps	$T_{1/2}$: from RDDS (1984To10).
3681.1 ^{^w} 5	12-	<1.0 ps	T _{1/2} : from RDDS (1984To10). Additional information 3.
3699.5 ^{<i>a</i>} 6	11-		
3860.5+ 5	14+	1.24 ps 7	$T_{1/2}$: from RDDS (1992De28). Others (RDDS): 0.83 ps 21 (1984To10), 1.0 ps +7-10 (1977Hu10),<2 ps (1975Wa14).
3985.1 [#] 8	12^{+}		
4026.5 ^{<i>x</i>} 5	13-		
4119.7 ⁰ 6	12-		
4448.6 7	14-		
4535.4 0	15	0.00 7	
4555.27 5	10'	0.28 ps /	$1_{1/2}$: from KDDS (1992De28). Others: 0.35 ps 8 (DSAM, 19901108), 0.7-1.0 ps (RDM and DSAM, 1984To10).
4755.2# 9	14+		
4862.2°C 6	15-		
4972.8 <mark>0</mark> 7	14-		

(HI,xnγ) **1984To10** (continued)

¹³⁰Ce Levels (continued)

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
5304.6 ^a 7	15-		
5343.3 [@] 8	16-		
5384.3 [‡] 6	18^{+}	0.21 ps 5	T _{1/2} ; from DSAM (1990Ti08). Other: 0.70 ps 14 (DSAM.1984To10).
5585.1 ^b 7	16-	0.20 Po 0	
5608 [#] 1	16+		
5757 7 & 7	17-		
5880.5 ^a 7	17^{-}		
5884.3 8	(17 ⁻)		
6211.1 <mark>b</mark> 8	18-		
6319.8 [@] 9	18^{-}		
6341.8 [‡] 6	20^{+}	173 fs 35	T _{1/2} ; from DSAM (1990Ti08). Other: 0.24 ps 6 (DSAM,1984To10).
6396 <i>1</i>	20^{+}		
6533 [#] 2	18^{+}		
6575.4 <mark>a</mark> 8	19-		
6642.1 <mark>&</mark> 8	19-		
6977.3 ^b 8	20^{-}		
7388 [@] 1	20^{-}		
7409.0 [‡] 7	22+	75 fs 14	T _{1/2} : from DSAM (1990Ti08). Other: 0.21 ps 4 (DSAM,1984To10).
7411.1 ^a 10	21-		-,-
7513 [#] 2	20^{+}		
7583 ^{&} 1	21^{-}		
7883.4 <mark>b</mark> 9	22^{-}		
8378.7 ^a 11	23^{-}		
8511 [@] 2	22^{-}		
8554 [#] 2	22^{+}		
8570.5 [‡] 9	24+	52 fs 10	T _{1/2} : DSAM (1990Ti08).
8605 ^{&} 2	23-		
8606 1	24+		
8910.6 ^b 11	24^{-}		
9463.6 ^{<i>a</i>} 13	25-		
9664 [#] 3	24+		
9702.9 10	(26+)		
9703 ^{cc} 2	25^{-}		
9/48 2	20	$21 f_{-} 0$	$T \rightarrow DCAM(1000T00)$
9810 ¹ 2	20	51 18 9	$1_{1/2}$: DSAM (19901108).
$10049^{\circ} 2$ $10640^{\circ} 2$	26 27-		
10049 2 $10840 \frac{4}{3}$	26+		
$10876 \frac{\%}{2}$	20		
10997 2	$\frac{27}{28^+}$		
11132 2	 28 ⁺		
11138 2	$\frac{28}{28^{+}}$		
11282 ^b 2	28^{-}		
11922 ^{<i>a</i>} 3	29-		
12097 <mark>&</mark> 3	29-		
12486 [‡] <i>3</i>	30+		
12606 ^b 3	30-		
-			

1984To10 (continued) $(HI,xn\gamma)$

¹³⁰Ce Levels (continued)

E(level)	$J^{\pi \dagger}$
13817 [‡] 3	32+

15178[‡] *3* 34⁺

 † From $\gamma(\theta),\,\gamma\gamma(\theta)$ and associated band structures.

[‡] Band(A): g.s. (yrast) band, AB after 10^+ . second backbend at about 24^+ . [#] Band(B): γ band, γ AB after 10^+ . [@] Band(C): AE band.

& Band(D): AF band.

^{*a*} Band(E): K^{π} =(7⁻) af band, afAB after 15⁻. ^{*b*} Band(F): K^{π} =(7⁻) ae band, aeAB after 14⁻.

$\gamma(^{130}\text{Ce})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [@]	δ	$\alpha^{\mathbf{b}}$	$I_{(\gamma+ce)}$	Comments
(72.8 ^{&})	&	2453.4	7-	2380.8 6-				≈1.9	I _(γ+ce) : branching=10% (1984To10) based on subsequent γ 's in $\gamma\gamma$ spectrum.
116.4 5	0.5 1	2760.7	9-	2644.3 8-					subsequent / 5 m // spectrum
(120.5 ^{&})	&	2453.4	7-	2333.1				≈4.3	$I_{(\gamma+ce)}$: branching=23% (1984To10) based on subsequent γ' s in $\gamma\gamma$ spectrum
189.3 <i>3</i>	9.5 20	2642.2	8-	2453.4 7-	(M1+E2)	-1.3 4	0.21 5		$\begin{aligned} \alpha(\text{K}) &= 0.1687; \ \alpha(\text{L}) &= 0.036; \\ \alpha(\text{M}) &= 0.0077; \\ \alpha(\text{N}+) &= 0.00205 \\ \text{A}_2 &= -0.88 \ 3, \ \text{A}_4 &= +0.14 \ 3 \\ (1984\text{To}10). \end{aligned}$
248.2 5	0.5 1	3319.6	11^{-}	3071.4 10-					
253.9 2	100 10	253.98	2+	0.0 0+	E2		0.0837		$\begin{array}{l} \alpha(\text{K}) \exp = 0.068 \ 12 \\ \alpha(\text{K}) = \ 0.0659; \ \alpha(\text{L}) = 0.01399; \\ \alpha(\text{M}) = 0.00300; \\ \alpha(\text{N}+) = 0.00079 \\ \text{A}_2 = +0.40 \ 1, \ \text{A}_4 = -0.18 \ 2 \\ (1974\text{De}12). \\ \text{Additional} \\ \text{information 4.} \end{array}$
260.4 4	3.0 6	2313.0	7-	2052.8 8+	D(+Q)	+0.05 5			$A_2 = -0.02 \ 3, \ A_4 = -0.02 \ 3$
263.4 4	3.2 6	2644.3	8-	2380.8 6-					().
280.5 4	1.5 <i>3</i>	5585.1	16-	5304.6 15-					
295.5 4	1.5 <i>3</i>	5880.5	17^{-}	5585.1 16-					
310.7 4	1.4 <i>3</i>	3071.4	10^{-}	2760.7 9-					
316.3 4	1.9 4	2958.2	9-	2642.2 8-					
330.6 5	1.0 2	6211.1	18^{-}	5880.5 17-					
331.2 4	2.2 4	2644.3	8-	2313.0 7-					
332.0 4	1.5 3	5304.6	15-	4972.8 14-					
345.4 5	0.5 1	4026.5	13-	3681.1 12-					
358.4 2	15.3 15	2313.0	7-	1954.6 5-	$E2^{a}$				
358.4 5	0.9 2	3316.6	10^{-}	2958.2 9-					
361.5 4	1.1 2	3681.1	12-	3319.6 11-					
364.4 5	0.9 2	6575.4	19-	6211.1 18-					

(HI,xnγ) **1984To10** (continued)

γ ⁽¹³⁰Ce) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.@	δ	Comments
383.0 5 401.0 5 402.0 5 415.5 4 415.5 5 420.3 5 426.2 5	0.8 2 0.6 1 0.7 2 1.8 4 0.7 2 0.3 1 0.6 1	3699.5 2453.4 6977.3 2313.0 4535.4 4119.7 2380.8	11 ⁻ 7 ⁻ 20 ⁻ 7 ⁻ 13 ⁻ 12 ⁻ 6 ⁻	3316.6 2052.8 6575.4 1897.4 4119.7 3699.5 1954.6	$ \begin{array}{r} 10^{-} \\ 8^{+} \\ 19^{-} \\ 6^{+} \\ 12^{-} \\ 11^{-} \\ 5^{-} \\ \end{array} $			E _γ : 419 (2000PaZZ).
427.1 3 434 [#] 437.1 5 447.6 2 456.4 2	6.8 <i>14</i> 0.5 <i>1</i> 13.7 <i>14</i> 99 <i>10</i>	3071.4 7411.1 4972.8 2760.7 710.4	10 ⁻ 21 ⁻ 14 ⁻ 9 ⁻ 4 ⁺	2644.3 6977.3 4535.4 2313.0 253.98	8 ⁻ 20 ⁻ 13 ⁻ 7 ⁻ 2 ⁺	E2 ^{<i>a</i>} E2 ^{<i>a</i>}		α (K)exp=0.013 <i>3</i> A ₂ =+0.32 <i>I</i> , A ₄ =-0.14 <i>I</i> (1974De12). Additional information 5
473 [#] 483.3 5 487.7 4	0.5 <i>1</i> 2.5 5	7883.4 2380.8 1322.6	22 ⁻ 6 ⁻ 4 ⁺	7411.1 1897.4 834.6	21 ⁻ 6 ⁺ 2 ⁺			
495" 499.0 <i>4</i> 502.9 <i>2</i>	1.8 <i>4</i> 38 <i>4</i>	8378.7 2453.4 3311.8	23 ⁻ 7 ⁻ 12 ⁺	7883.4 1954.6 2808.9	22 ⁻ 5 ⁻ 10 ⁺	E2		E_{γ} : 497 (19841w01). A ₂ =+0.38 2, A ₄ =-0.04 2 (1984To10). Additional information 8.
505 [#] 532 [#]	21.2	2560.4 8910.6	8^+ 24 ⁻	2052.8 8378.7	8^+ 23 ⁻	E2		$A = (0.27, 10, A = 0.10, 14, (1074D_{2}12))$
548.6 2 553 [‡] 556.1 3	5.0 <i>10</i>	3860.5 9463.6 2453.4	14 ⁺ 25 ⁻ 7 ⁻	3311.8 8910.6 1897.4	12 ⁺ 24 ⁻ 6 ⁺	E2		$A_2 = +0.37$ 10, $A_4 = -0.10$ 14 (1974De12). γ not shown by 2000PaZZ.
573.6 4 574.8 4 576.0 5 580.1 4	9.1 20 4.2 8 3.5 7 0.2 1 1.3 3	5319.6 1897.4 1897.4 5880.5 834.6	6^+ 6^+ 17^- 2^+	2760.7 1323.9 1322.6 5304.6 253.98	9 6 ⁺ 4 ⁺ 15 ⁻ 2 ⁺	E2"		
587 [#] 591.6 5 609.7 4 612 [#]	0.9 2 4.2 8	2642.2 2644.3 3681.1	8 ⁻ 8 ⁻ 12 ⁻ 4 ⁺	2052.8 2052.8 3071.4	8 ⁺ 8 ⁺ 10 ⁻ 4 ⁺	E2 ^{<i>a</i>}		
612.5 <i>4</i> 613.6 2	1.3 <i>3</i> 86 9	1322.0 5585.1 1323.9	16 ⁻ 6 ⁺	4972.8 710.4	4 14 ⁻ 4 ⁺	E2		α (K)exp=0.0058 <i>15</i> A ₂ =+0.26 2, A ₄ =-0.14 3 (1974De12). Additional information 6.
626.1 5 630.7 2 631.9 5 663.4 4 674.7 4	0.4 <i>I</i> 15.2 <i>I5</i> 0.3 <i>I</i> 3.6 8 3.2 6	6211.1 1954.6 1954.6 2560.4 3316.6	18 ⁻ 5 ⁻ 5 ⁻ 8 ⁺ 10 ⁻	5585.1 1323.9 1322.6 1897.4 2642.2	16^{-} 6^{+} 4^{+} 6^{+} 8^{-} 10^{+}	D(+Q)	+0.04 4	A ₂ =-0.19 <i>I2</i> , A ₄ =-0.01 7. E _{γ} : 635 (2000PaZZ).
692.7 2 695.0 5 706.9 3 708.0 4	1.2 2 23.5 24 0.4 1 6.5 13 4.0 8	4553.2 6575.4 4026.5 2760.7	12 16 ⁺ 19 ⁻ 13 ⁻ 9 ⁻	3290.5 3860.5 5880.5 3319.6 2052.8	10 14 ⁺ 17 ⁻ 11 ⁻ 8 ⁺	E2		A ₂ =+0.32 4, A ₄ =-0.20 6 (1974De12).
728.7 2	64 6	2052.8	8+	1323.9	6+	E2		α (K)exp=0.0027 6 A ₂ =+0.37 2, A ₄ =0.00 <i>I</i> (1984To10). A ₂ =+0.30 3, A ₄ =-0.11 4 (1974De12). Additional information 7
735.9 4	3.1 6	3296.3	10^{+}	2560.4	8+			

Continued on next page (footnotes at end of table)

(HI,xnγ) **1984To10** (continued)

$\gamma(^{130}\text{Ce})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.@	Comments
741.3 <i>4</i> 756.0 2	2.2 <i>4</i> 45 <i>5</i>	3699.5 2808.9	11 ⁻ 10 ⁺	2958.2 2052.8	9- 8+	E2	$A_2 = +0.41$ 2, $A_4 = -0.05$ 2 (1984To10). $A_2 = +0.38$ 2, $A_4 = -0.19$ 3 (1974De12).
766.4 <i>5</i> 767.5 <i>4</i> 769.1 <i>4</i> 770.1 <i>5</i>	0.4 <i>1</i> 3.1 6 1.4 <i>3</i> 0.8 <i>2</i>	6977.3 4448.6 5304.6 4755.2	20 ⁻ 14 ⁻ 15 ⁻ 14 ⁺	6211.1 3681.1 4535.4 3985.1	18 ⁻ 12 ⁻ 13 ⁻ 12 ⁺	E2 ^{<i>a</i>}	
803.3 <i>4</i> 831.0 2 835.0 <i>4</i> 835.7 <i>3</i>	2.7 6 16.5 <i>1</i> 7 1.2 <i>3</i> 6.1 <i>1</i> 2	4119.7 5384.3 834.6 4862.2	12^{-} 18^{+} 2^{+} 15^{-}	3316.6 4553.2 0.0 4026.5	10 ⁻ 16 ⁺ 0 ⁺ 13 ⁻	E2 ^{<i>a</i>}	
835.8 <i>4</i> 836 [‡] 853 [#]	2.2 4	4535.4 7411.1 5608	13 ⁻ 21 ⁻ 16 ⁺	3699.5 6575.4 4755.2	11 ⁻ 19 ⁻ 14 ⁺		E_{γ} : unresolved doublet.
853.6 4 884.4 4 894.7 4 895.5 4	2.1 4 2.3 5 2.8 6 3.5 7	4972.8 6642.1 5343.3 5757.7 2058.2	14 ⁻ 19 ⁻ 16 ⁻ 17 ⁻ 0 ⁻	4119.7 5757.7 4448.6 4862.2 2052.8	12 ⁻ 17 ⁻ 14 ⁻ 15 ⁻ 8+	E2 ^a	
907 [#] 925 [#] 941 [#]		7883.4 6533 7583	22 ⁻ 18 ⁺ 21 ⁻	6977.3 5608 6642.1	8 20 ⁻ 16 ⁺ 19 ⁻		E _γ : 902 (1984Tw01).
957.4 <i>3</i> 968 [#] 976.5 <i>4</i> 980 [#]	6.1 <i>12</i> 1.2 <i>3</i>	6341.8 8378.7 6319.8 7513	20 ⁺ 23 ⁻ 18 ⁻ 20 ⁺	5384.3 7411.1 5343.3 6533	18 ⁺ 21 ⁻ 16 ⁻ 18 ⁺		E _γ : 966 (1984 Tw01).
989.0 5 1009.2 4 1012 [#]	0.9 2 4.6 <i>10</i>	2313.0 2333.1 6396	20 7 ⁻ 20 ⁺	1323.9 1323.9 5384.3	6 ⁺ 6 ⁺ 18 ⁺		
1022 [#] 1022.1 5 1027 [#] 1041 [#]	1.0 2	8605 5884.3 8910.6 8554	23 ⁻ (17 ⁻) 24 ⁻ 22 ⁺	7583 4862.2 7883.4 7513	21 ⁻ 15 ⁻ 22 ⁻ 20 ⁺		
1041 1056.9 <i>4</i>	4.0 8	2380.8	6 ⁻	1323.9	20 6 ⁺	D+Q	δ (Q/D)=-0.2 to +0.6 from A ₂ =+0.49 9, A ₄ =+0.12 10 (1984To10).
1067.0 <i>4</i> 1068 [#] 1068.8 <i>5</i>	3.2 <i>6</i> 0.8 <i>2</i>	7409.0 7388 1322.6	22 ⁺ 20 ⁻ 4 ⁺	6341.8 6319.8 253.98	20 ⁺ 18 ⁻ 2 ⁺		
1085 [#] 1098 [#] 1110 [#]		9463.6 9703 9664	25 ⁻ 25 ⁻ 24 ⁺	8378.7 8605 8554	23 ⁻ 23 ⁻ 22 ⁺		E _γ : 1083 (1984Tw01).
1123 [#] 1129.7 <i>3</i> 1132.5 <i>5</i> 1138 [#]	5.0 <i>10</i> 0.9 <i>2</i>	8511 2453.4 9702.9	22 ⁻ 7 ⁻ (26 ⁺) 26 ⁻	7388 1323.9 8570.5 8910.6	20 ⁻ 6 ⁺ 24 ⁺ 24 ⁻		$F \cdot 1136 (1984Tw01)$
1142 [#] 1161.4 5 1173 [#]	1.0 2	9748 8570.5 10876	26 ⁺ 24 ⁺ 27 ⁻	8606 7409.0 9703	24 ⁺ 22 ⁺ 25 ⁻		Ly. 1150 (19041w01).
1185 [#] 1185 [#]		10649 10849	27 ⁻ 26 ⁺	9463.6 9664	25 ⁻ 24 ⁺		

Continued on next page (footnotes at end of table)

(HI,xn γ) 1984To10 (continued)

$\gamma(^{130}\text{Ce})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
1187#		1897.4	6+	710.4	4+	
1197 [#]		8606	24+	7409.0	22^{+}	
1221 [#]		12097	29-	10876	27^{-}	
1233 [#]		11282	28^{-}	10049	26-	E _γ : 1227 (1984Tw01).
1244.3 5	0.3 1	1954.6	5-	710.4	4+	,
1246		9816	26^{+}	8570.5	24^{+}	E_{γ} : from 1990Ti08. E_{γ} =1242 in 1983No07 and 1984Tw01.
1249 [#]		10997	28^{+}	9748	26^{+}	
1273 [#]		11922	29-	10649	27^{-}	
1316 [#]		11132	28^{+}	9816	26^{+}	
1324 [#]		12606	30-	11282	28^{-}	E _γ : 1322 (1984Tw01).
1331 [#]		13817	32^{+}	12486	30^{+}	
1354 [#]		12486	30^{+}	11132	28^{+}	
1361 [#]		15178	34+	13817	32^{+}	
1390 [#]		11138	28^{+}	9748	26^{+}	

[†] From 1984To10, except as noted. $\Delta(E\gamma)=0.2$ keV for I $\gamma>10$, 0.3 keV for I $\gamma=5-10$, 0.4 keV for I $\gamma=1-5$ and 0.5 keV for I $\gamma<1$; $\Delta(I\gamma)=10\%$ for I $\gamma>10$ and 20-30% for I $\gamma<10$, based on a general statement by 1984To10.

[‡] From spectrum shown by 1983No07 (also 1984Tw01), intensity is not available.

From 2000PaZZ.

[@] From $\gamma(\theta)$, $\gamma\gamma(\theta)$ of 1984To10 and $\alpha(K)\exp's$ of 1973Wy01 (also 1970Sm05).

& Weak γ from coincidence relations, $E\gamma$ from level-energy difference.

^{*a*} From $\gamma\gamma(\theta)$ (1984To10).

^{*b*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

(HI,xnγ) 1984To10

¹³⁰₅₈Ce₇₂

(HI,xnγ) 1984To10

¹³⁰₅₈Ce₇₂

¹³⁰₅₈Ce₇₂