100 Mo(34 S,4n γ):SD 1998Se10,1997Wi02

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 93, 33 (2001)	11-May-2001

See (HI,xn γ) (1984To10) for normal-deformed states.

1998Se10 (also 1997Pa42): E=155 MeV. Measured E γ , $\gamma\gamma\gamma$ using EUROGAM ii array with 54 Ge detectors including 24 Clover type. Deduced four SD bands.

2000PaZZ: E=155 MeV. Measured E γ , I γ , $\gamma\gamma$ (triples and quadruples) $\gamma\gamma(\theta)$ (DCO), $\gamma($ lin pol) using EUROGAM 2 array. Preliminary report; full details are not yet available.

Additional information 1. 1997Wi02: 100 Mo(34 S,4n γ) E=145 MeV. Measured E γ , $\gamma\gamma\gamma$ with 8π array (20 Ge detectors and 71 BGO detectors). Deduced SD band.

¹³⁰Ce Levels

E(level)	\mathbf{J}^{π}	Comments
x [@]	J≈(18)	 J^π: 899 transition estimated as 22 to 20. Positive parity proposed by 1998Se10. This level may deexcite by an 866γ followed by a 956γ as indicated by the alignment plot in figure 3 of 1998Se10. 2000PaZZ show the ordering as 864γ-956γ-834γ, followed by 864γ feeding the 10⁺ level of g.s. band.
865+x [@]	J+2	
1764+x [@]	J+4	
2720+x [@]	J+6	
3752+x [@]	J+8	
4859+x [@]	J+10	
6007+x [@]	J+12	
7124+x [@]	J+14	
8339+x [@]	J+16	
9627+x@	J+18	
10994+x [@]	J+20	
12442+x [@]	J+22	
13974+x [@]	J+24	
15595+x [@]	J+26	
17304+x [@]	J+28	
19109+x [@]	J+30	
21009+x [@]	J+32	
23001+x [@]	J+34	
25065+x? [@]	J+36	
y ^{†&}	J	
841+y	J+2	
1755+y&	J+4	
2738+y	J+6	
3790+y	J+8	
4914+y	J+10	
6110+y&	J+12	
7376+y&	J+14	
8714+y	J+16	
10126+y ^{&}	J+18	
11615+y ^{&}	J+20	

100 Mo (34 S ,4n γ): SD	1998Se10,1997Wi02 (continued)
---	-------------------------------

E(level)	J^{π}	E(level)	J^{π}	E(level)	J^{π}	E(level)	J^{π}
13181+y <mark>&</mark>	J+22	1880+z ^a	J+4	12394+z ^a	J+20	3995+u ^b	J+6
14827+y&	J+24	2928+z ^a	J+6	14098+z ^a	J+22	5473+u ^b	J+8
16553+y &	J+26	4050+z ^a	J+8	15903+z ^a	J+24	7028+u ^b	J + 10
18359+y <mark>&</mark>	J+28	5246+z ^a	J+10	17807+z ^a	J+26	8662+u ^b	J+12
20259+y <mark>&</mark>	J+30	6517+z ^a	J+12	19806+z ^a	J+28	10379+u ^b	J+14
22255+y&	J+32	7863+z ^a	J+14	u ^{#b}	J	12169+u ^b	J+16
z ^{‡a}	J	9288+z ^a	J+16	1261+u ^b	J+2	14031+u ^b	J+18
904+z ^a	J+2	10800+z ^a	J+18	2592+u ^b	J+4		

¹³⁰Ce Levels (continued)

[†] Possible feeding of 14⁻, 16⁻ and 17⁻ states of 2-quasiproton band (2000PaZZ).

 ± 2000 PaZZ show a cascade of 832γ -(757 γ -675 γ) deexciting this level, followed by possible feeding of 14⁺ level of g.s. band.

[#] 2000PaZZ show an 1175 γ deexciting this level, followed by possible feeding of 22⁺ level of g.s. band.

[@] Band(A): SD-1 band (1998Se10). Percent population=0.6 (1998Se10). Configuration=($\nu 6^1$)($\nu 1/2$ [411]), α =0. The band may continue downward with four more transitions of 866, 956, 866 and 834 keV, but the ordering of these γ rays in the lowest part of the band is not yet established. 2000PaZZ suggest the ordering as 864γ -956 γ -834 γ followed by 864γ feeding the 10⁺ level of g.s. band.

[&] Band(B): SD-2 band (1998Se10,1997Wi02). Percent population=1.0 (1998Se10), 0.5 (1997Wi02). Configuration=(ν 6¹)(ν 7/2[523]), α =0.

^{*a*} Band(C): SD-3 band (1998Se10). Percent population=0.5 (1998Se10). Configuration=(ν 6¹)(ν 1/2[411]), α =1, possibly signature partner of SD-1 band.

^b Band(D): SD-4 band (1998Se10). Percent population=0.4 (1998Se10). Configuration=(ν 6¹)(ν 7/2[523]), α =1, possibly signature partner of SD-2 band.

Relative intensity plots are given by 1997Pa42.

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
^x 834 [@]					
841	841+y	J+2	У	J	
865 [‡]	865+x	J+2	х	J≈(18)	E_{γ} : 868 (2000PaZZ).
^x 865 ^{‡@}					
^x 865 ^{‡@}					
899	1764+x	J+4	865+x	J+2	
904	904+z	J+2	Z	J	
914	1755+y	J+4	841+y	J+2	
956 <mark>#</mark>	2720+x	J+6	1764+x	J+4	
^x 956 ^{#@}					
976	1880+z	J+4	904+z	J+2	
983	2738+y	J+6	1755+y	J+4	
1032	3752+x	J+8	2720+x	J+6	
1048	2928+z	J+6	1880+z	J+4	
1052	3790+y	J+8	2738+y	J+6	E_{γ} : 1056 (2000PaZZ).
1107	4859+x	J+10	3752+x	J+8	
1117	7124+x	J+14	6007+x	J+12	
1122	4050+z	J+8	2928+z	J+6	

¹³⁰₅₈Ce₇₂-3

¹⁰⁰Mo(³⁴S,4nγ):SD **1998Se10**,1997Wi02 (continued)

$\gamma(^{130}\text{Ce})$ (continued)

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
1124	4914+y	J+10	3790+y	J+8	E_{γ} : 1127 (2000PaZZ).
1148	6007+x	J+12	4859+x	J+10	
1196	6110+y	J+12	4914+y	J+10	E_{γ} : 1199 (2000PaZZ).
1196	5246+z	J+10	4050+z	J+8	
1215	8339+x	J+16	7124+x	J+14	
1261	1261+u	J+2	u	J	
1266	7376+y	J+14	6110+y	J+12	
1271	6517+z	J+12	5246+z	J+10	
1288	9627+x	J+18	8339+x	J+16	
1331	2592+u	J+4	1261+u	J+2	
1338	8/14+y	J+16	/3/6+y	J+14	E_{γ} : 1341 (2000PaZZ).
1346	/863+z	J+14	651/+z	J+12	
1307	10994 + X	J+20	9027+X	J+18 I+4	
1405	3993+u 10126 i v	J+0 I+18	2392+u 8714+v	J+4 I+16	$E + 1/16 (1007W; 0.2, 2000 D_{0}, 7.7)$
1412	0288 ± 7	$J \pm 16$ $I \pm 16$	7863 ± 7	$J \pm 10$ $I \pm 14$	E_{γ} . 1410 (1797 W102,20001 dZZ).
1448	12442 + x	I+22	10904 + x	J+1+ I+20	
1478	5473+11	J+8	3995+11	J+6	
1489	11615 + v	J+20	10126 + v	J+18	
1512	10800 + z	J+18	9288+z	J+16	
1532	13974+x	J+24	12442+x	J+22	
1555	7028+u	J+10	5473+u	J+8	
1566	13181+y	J+22	11615+y	J+20	
1594	12394+z	J+20	10800+z	J+18	
1621	15595+x	J+26	13974+x	J+24	
1634	8662+u	J+12	7028+u	J+10	
1646	14827+y	J+24	13181+y	J+22	
1704 ^{&}	14098+z	J+22	12394+z	J+20	E_{γ} : 2000PaZZ show a cascade of 1664 γ -1761 γ above 1594 γ .
1709	17304+x	J+28	15595+x	J+26	
1717	10379+u	J+14	8662+u	J+12	
1726	16553+y	J+26	14827+y	J+24	
1790	12169+u	J+16	103/9+u	J+14	
1805	19109+x	J+30	1/304 + x	J+28	
1805°	15903+z	J+24	14098+z	J+22	E_{γ} : see comment for 1704 γ .
1806	18359+y	J+28	16553+y	J+26	
1862	14031+u	J+18	12169+u	J+16	
1900	21009+x	J+32	19109+x	J+30	
1900	20259+y	J+30	18359+y	J+28	
1904 ^{&a}	17807+z	J+26	15903+z	J+24	
1992 <mark>&</mark>	23001+x	J+34	21009+x	J+32	
1996 <mark>&</mark>	22255+y	J+32	20259+y	J+30	
1999 <mark>&a</mark>	19806+z	J+28	17807+z	J+26	
2064 ^{&a}	25065+x?	J+36	23001+x	J+34	

[†] From 1998Se10. 1997Wi02 give energies of nine γ rays in SD-2 band.

^(a) Associated with the lowest part of SD-1 band, but the ordering of the transitions is unknown. 2000PaZZ suggest the ordering as 864-956-834 followed by 864 feeding the 10^+ level of g.s. band.

[&] This γ not given by 2000PaZZ.

^{*a*} Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

[‡] Triplet.

[#] Doublet.

¹⁰⁰Mo(³⁴S,4nγ):SD 1998Se10,1997Wi02

Level Scheme

¹³⁰₅₈Ce₇₂-4

Legend

 $---- \blacktriangleright \gamma$ Decay (Uncertain)

	\sim	
J+18		14031+u
J+16		12169+u
I+14		10379+u
1.12		866211
<u>J+12</u>		8002+u
<u>J+10</u>	↓ ~`	7028+u
<u>J+8</u>		5473+u
J+6	▼	3995+u
<u>J+4</u>		2592+u
J+2	v	1261+u
J J+28	<u> </u>	$\frac{u}{19806+z}$
J+26		17807+z
J+24	▼	15903+z
J+22		14098+z
<u>J+20</u>	No.	12394+z
J+18		10800+z
J+16		9288+z
J+14		7863+z
J+12		6517+z
J+10		5246+z
J+8		4050+z
J+6	¢ Č	2928+z
J+4		1880+z
<u>J+2</u>	¥ ¥	904+z
J J+32		22255+y
J+30		20259+y
	Ś	10250
J+28	→ ◇	18359+y
J+26		16553+y
<u>J+24</u>	• • • • • • • • • • • • • • • • • • •	14827+y
<u>J+22</u>	⁹ 0çγ	13181+y
<u>J+20</u>		11615+y

¹³⁰₅₈Ce₇₂

4

¹⁰⁰Mo(³⁴S,4nγ):SD 1998Se10,1997Wi02

Legend

Level Scheme (continued)

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹³⁰₅₈Ce₇₂

¹⁰⁰**Mo**(³⁴**S**,4nγ):SD 1998Se10,1997Wi02

Band(D): SD-4 band (1998Se10)

J+18	140	31+u
J+16	1862 121	69+u
J+14	1790 103	79+u
J+12	1717 86	62+u
J+10	1634 70	28+u
J+8	1555 54	73+u
J+6	1478 39	95+u
J+4	1403 25	92+u
J+2	1331 12	61+u
J	1261	u

Band(C): SD-3 band

J+8	1555	5473
J+6	1478	3995
J+4	1403	2592
J+2	1331	1261
	-	-

(1998Se10)			
J+28	19806+z	_	
J+26	1999 17807+z		
J+24	15903+z		
J+22	1904/14098+z		
J+20	¹⁸⁰⁵ /12394+z		
J+18	1704 /10800+z		
J+16	1594 9288+z		
J+14	1512 7863+z		
J+12	1512 6517+z		
J+10	1425 5246+z		
J+8	1340 1271 / 4050+z		
J+6	1196 2928+z		
J+4	1122 / 1880+z		
J+2	1048 904+z		
J			

Band(B): SD-2 band
(1998Se10,1997Wi02)

J+32		22255+y
J+30	1006	20259+y
J+28	1990	18359+y
J+26	1900	/16553+y
J+24	1806	14827+y
J+22	1726	13181+y
J+20	1/20	11615+y
J+18	1646	10126+y
J+16	1566	8714+y
J+14	1489	7376+y
J+12	1412	6110+y
J+10	1338	4914+y
J+8	1266	3790+y
J+6	1196	2738+y
J+4	1052	/1755+y
J+2	983	841+y
J	841	y

Band(A): SD-1 band (1998Se10)

J+36		25065+x
J+34	2064	23001+x
J+32		21009+x
J+30	1992	/19109+x
J+28	1900	17304+x
J+26	1805	15595+x
J+24	1.00	13974+x
J+22	1709	12442+x
J+20	1621	10994+x
J+18	1532	9627+x
J+16	1448	8339+x
J+14	1367	7124+x
J+12	1288	6007+x
J+10	1215	4859+x
J+8	1117	3752+x
I+6	1148	2720+x
I I	1107	17(4)
<u>]+4</u> /	1032	$\int \frac{1}{04+x}$
J+2 ∖	956	∕ 865+x
J≈(18)	865	x

¹³⁰₅₈Ce₇₂