¹²C(n, γ):res

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024					

1950Ki68: ¹²C(n, γ) E=slow; measured E_{γ}, I_{γ}.

1963Ma60: ¹²C(n, γ) E \approx 30,65 keV; measured neutron radiative capture cross sections for Z \leq 92.

1975Ar19: ¹²C(n, γ_0) E=14 MeV; measured γ -yields, $I_{\gamma}(\theta)$. There is an indication γ_0 peaks at backward angles.

1984Wo05: ${}^{12}C(n,\gamma_0)$,(pol. $n,\gamma_0)$ E=12-18.8 MeV; measured $\sigma(\theta)$, analyzing power for $\theta \approx 50^{\circ} - 140^{\circ}$. Deduced states at

Ex=16-21.75 MeV. Combined analysis with other data indicates a secondary doorway state. Deduce a1, a2, b1, b2 from Legendre fit.

1985AuZZ: ¹²C(n, γ) E=6.5-18.5 MeV; measured $\sigma(\theta)$. ¹²C(pol. n, γ) E=12-18.8 MeV; measured analyzing, vector analyzing

power vs θ . ¹³C deduced resonances, doorway characteristics.

1986Be17: ¹²C(n, γ) E=7-19.5 MeV; measured σ (E, θ =90°). Deduced T_<=1/2 giant resonance at E_x=20.8 MeV with $\Gamma \approx 2.5$ MeV along with lower unresolved strength near E_n ≈ 10 MeV identified as the *pygmy* resonance. DSD model.

1987Au02: ¹²C(n, γ) E=6.5-18.5 MeV; measured $\sigma(E,\theta)$, θ =90°. Pygmy and giant resonance region. Direct-semidirect calculations. 1988McZT: ¹²C(n, γ); analyzed $\sigma(E_n)$.

1989Hu15: ¹²C(n, γ) E=14.2 MeV; measured $\gamma(\theta)$; deduced γ -multipolarity. Direct-semidirect model.

1990Ha19: ¹²C(n, γ) E=8-11 MeV; measured $\sigma(\theta=90^\circ)$ in the Pygmy and giant resonance region.

1990Ma52: ¹²C(n, γ) E<46 keV; measured effective capture σ (E); deduced Maxwellian averaged σ .

1991Hu05: ¹²C(n, γ) E=7-14 MeV; measured $\sigma(\theta)$ vs E, E_{γ}, I_{γ}, $\gamma(\theta)$. Analyzed pygmy resonance.

1991Na06,1991Na19: ¹²C(n, γ) E=30 keV, stellar energy; measured capture σ , E γ , I γ ; deduced nucleosynthesis implications.

1992Wi08: ¹²C(pol. n, γ) E=20-35 MeV; measured $\gamma(\theta)$, A_y vs E, γ (recoil)-coin; deduced E2, E1 capture interference. Direct semidirect model. Deduce a₁, a₂, b₁, b₂ from Legendre fit.

1994Oh02, 1996Na27: ¹²C(n, γ) E=10-250 keV; measured E_{γ}, I_{γ}, σ (E); deduced Maxwellian averaged σ and astrophysical implications.

1998Ki09: ¹²C(n, γ) E=550 keV; measured E_{γ}, I_{γ}; deduced partial capture σ . Deduced spectroscopic factor of ¹³C^{*}(3.09 MeV).

1999Oh04: ¹²C(n, γ) E \approx 42 keV; measured capture σ (E), E $_{\gamma}$, I $_{\gamma}$.

2008Oh05: XUNDL dataset compiled by McMaster, 2008.

E(n)=10-80 keV neutrons produced in the ⁷Li(p,n) reaction using the 3.2 MV Pelletron accelerator at the Tokyo Institute of Technology. Measured E γ , I γ , $\gamma\gamma$ coin using anti-Compton NaI(Tl) spectrometer, time-of-flight method. Non-resonant study.

Theory:

1971Al33,1971AlYV: ¹²C(n, γ) E \approx 30 keV; compiled experimental Maxwellian averaged σ ; deduced empirical correlation between σ and nucleosynthesis abundances.

1974Ma10: ¹²C(n_0,γ); analyzed isospin splitting in the giant dipole resonance.

1986Li16: ¹²C(pol. n, γ) E≤9 MeV; calculated polarization effects.

1987LyZY: ¹²C(n,γ) E=slow; analyzed data; deduced model parameters, capture mechanism.

1990Wa22: ¹²C(n, γ); analyzed data; deduced calibration γ -energies. Proposed E_{γ}=3683.915 keV 15 for transition 3.684 \rightarrow 0.

1991Ho18: ¹²C(n, γ) E=threshold-30 keV; calculated σ ; deduced reaction mechanism.

1993Ho06: ¹²C(n, γ) E \approx 8-20 MeV; analyzed $\sigma(\theta)$ vs E; deduced GDR, resonance parameters. Unified formalism.

1994Ot04: ¹²C(n, γ) E<0.5 MeV; calculated σ (E); deduced S-factor. Kinematically complete approach.

1995Li31: ¹²C(n,γ) E \approx 6-20 MeV; calculated capture $\sigma(\theta)$ vs E. Direct-semidirect model.

1995Me14: ¹²C(n,γ) E≤500 keV; calculated capture σ(E). Direct capture model.

1996Re16: ${}^{12}C(n,\gamma)$; analyzed inverse Coulomb dissociation reaction and relevance for astrophysical input.

1997Du09: ¹²C(n, γ) E_{c.m.} \leq 0.5 MeV; calculated capture σ (E). Calculated levels, B(λ), rms radius vs R(c). Multicluster approach.

1997Li10: ¹²C(n, γ) E<600 keV; calculated σ (En); deduced influence of scattering potential depth. Consistent direct-semidirect model.

1997Ti03: Analyzed vertex constants for capture reactions.

1998Ki01: ¹²C(n, γ) E<1 MeV; calculated σ ; deduced optical potential features.

1999MeZW: ¹²C(n,γ) E<0.8 MeV; analyzed capture σ ; deduced parameters.

2003Wu01: ¹²C(n, γ) E=0-1 MeV; calculated σ . Asymptotic normalization coefficient method, comparison with data.

2004Ba62: ¹²C(n, γ) E=0-0.6 MeV; calculated S-factors, σ (E) for radiative capture. Taylor expansion.

2004Hu10: ¹²C(n, γ) E=low; calculated astrophysical reaction rate, resonance effects.

2009Wa17: ¹²C(n, γ) E_{c.m.}<1 MeV; analyzed σ , spectroscopic factors and other parameters for nonresonant neutron capture using

¹²C(\mathbf{n},γ):res (continued)

simple polynomials obtained from Taylor expansions. Comparison with experimental data. 2010Hu11: ${}^{12}C(n,\gamma) \to E_{c.m.} < 2$ MeV; calculated binding energies, σ , S-factors, spectroscopic factors. Single-particle potential model. 2012Pr13, 2020Pr08: ${}^{12}C(n,\gamma) \to < 20$ MeV; calculated Maxwellian-averaged σ , astrophysical reaction rates, neutron thermal σ , Westcott factors, resonance integrals.

2013Di12: ¹²C(n, γ) E<20 MeV; analyzed available data; deduced recommended σ , k_{eff}.

2013Du08: ¹²C(n, γ) E<1 MeV; calculated σ , low-energy phase shifts. Potential cluster model, comparison with available data.

2013Du16: ¹²C(n, γ) E<1 MeV; calculated σ , phase shifts. Young diagrams, potential cluster model.

2017HaZY: ¹²C(n, γ) E=0-0.2 MeV; calculated σ .

2018Br05: ¹²C(n, γ) E=30 keV; calculated Maxwellian-averaged σ .

2024Sa13: ¹²C(n, γ); R-matrix analysis of the astrophysically relevant region of the reaction.

¹³C Levels

E(level) [†]	J^{π}	Г	Comments	
0	$1/2^{-}$			
20520 70		510 keV 70	E(level),Γ: From the analyzing power data in (1984Wo05): secondary doorway state.	
21050 60		4.2 MeV 4	E(level), Γ: From the analyzing power data in(1984Wo05): primary doorway state. See also	
			$E_x \approx 20.81$ MeV and $\Gamma \approx 2.5$ MeV in (1986Be17).	

 † (1986Be17) also observed an unresolved broad peak at $E_n(res){\approx}10$ MeV ($E_x{\approx}14180$ keV).

$\gamma(^{13}C)$

E_{γ}^{\dagger}	E _i (level)	\mathbf{E}_{f}	\mathbf{J}_f^π
20.520×10^3	20520	0	1/2-
21.050×10^3	21050	0	$1/2^{-}$

[†] From level energy difference.

$\frac{12}{C(n,\gamma)}$:res

Level Scheme

