${}^{13}_{6}C_{7}$

¹³N ε + β ⁺ decay

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024					

Parent: ¹³N: E=0; $J^{\pi}=1/2^-$; $T_{1/2}=9.9584$ min 36; $Q(\varepsilon)=2220.47$ 27; $\%\varepsilon+\%\beta^+$ decay=100

 13 N-T_{1/2}: From Adopted Levels of 13 N.

¹³N-Q(ε): From (2021Wa16).

1935Ru01: ¹³N(β^+); ¹⁰B(α ,n) was used to produce ¹³N, which was found to decay with T_{1/2} \approx 14 minutes.

1939Wa09: measured T_{1/2}=9.93 min 3.

1948Co24: ¹³N(β^+); measured T_{1/2}=10.2 min 1.

1950Ho01: ¹³N(β^+); measured end-point energy E_{β}(max)=1.202 MeV 5 and T_{1/2}=10.05 min 10.

1953Ch34: ¹³N(β^+); measured T_{1/2}=602.9 sec 19=10.05 min 3.

1954Gr66: ¹³N(β^+); measured E_{β}(max)=1.185 MeV 25.

1955Wi43: ¹³N; measured $T_{1/2}=10.08 \text{ min } 4$.

1957Da08: ¹³N(β^+); measured T_{1/2}=9.96 min 3.

1957De22: ¹³N(β^+); measured T_{1/2}=10.02 min 10.

1957No17: ¹³N(β^+); measured T_{1/2}=10.07 min 6.

1958Ar15: ¹³N(β^+); measured T_{1/2}=9.96 min 3.

1958Da09: ¹³N(β^+); measured E_{β}(max)=1.190 MeV 3 and T_{1/2} as in (1957Da08).

1960Ja12: ¹³N(β^+); measured T_{1/2}=9.9965 min 5.

1960Ki02: ¹³N(β^+); measured T_{1/2}=9.93 min 5.

1961Ra06: ¹³N(β^+); measured T_{1/2}=12.3 min 7 (excluded).

1965Bo42: ¹³N(β^+); measured T_{1/2}=10.05 min 5.

1965Eb01: ¹³N(β^+); measured T_{1/2}=9.96 min 2.

1968Ri15: ¹³N(β^+); measured T_{1/2}=9.963 min 9.

1971Go40: ¹³N(β^+); for decay to ¹³C_{g.s.}, log*ft*=3.667 *1*.

1973SiYS: ¹³N(β^+); measured T_{1/2}=10.0 min 5.

1977Az01: ¹³N(β^+); measured T_{1/2}=9.965 min 10.

1980An40: ¹³N(β^+); measured T_{1/2}=9.967 min 10.

1989KaYR: ¹³N(β^+); measured T_{1/2}=9.962 min 20.

2022Lo14: ¹³N(β^+); measured T_{1/2}=9.9508 min 32; provided an analysis using only their value and (1968Ri15,1977Az01) and recommended T_{1/2}=9.9532 min 37.

1995Va27: ¹³N(β^+); measured β asymmetry following beam implantation in Pt; deduced beam polarization.

Theory:

1970Ko41: general model for β decay in even-odd nuclei.

1970Da21: generalized pairing-force model analysis of log ft values.

1972Ma72: calculated β shape spectra.

1973Wi04: analysis of the Axial-Vector coupling constant.

1973Su04: analysis of K-electron capture branching ratios.

1975Kr14: developed O(5) symmetry model to analyzed log ft values.

1977Ri08: Shell model analysis of log ft values.

1980An31: analysis of K-electron capture rates.

1984Ko40: analyzed isotensor component in isovectorial transition.

1991Na05: analyzed mirror nuclei decays in a search for evidence of right-handed currents.

1995Go34: analyzed β -decay polarization asymmetry data in a search for evidence of right-handed chirality.

2008Se10: analyzed half-lives, branching ratios, electron-capture probabilities; deduced *ft* values in mirror decays.

2008Pe13: analyzed correlations between β decays in mirror nuclei and their magnetic moments.

2012Sa50: analysis of isospin related corrections for superallowed β transitions.

2015Mo10, 2010MoZU: calculated improved beta spectra, shape factors, mean energies, experimental mean energies.

2015To02: developed parametrization of the statistical rate functions, f, for superallowed T=1/2 transitions.

2021Ir01: single-particle model analysis of the ${}^{13}N(\beta^+)$ reaction. Emphasized asymptotic normalization coefficients (ANCs) and

¹³N ε + β ⁺ decay (continued)

spectroscopic factor data. 2021Da11: analyzed the role of tensor forces in β decay. 2024Fa01: analyzed decay between isobaric analog mirror states.

¹³C Levels

 $\frac{\text{E(level)}}{0} \quad \frac{\text{J}^{\pi}}{1/2^{-}} \quad \frac{\text{T}_{1/2}}{\text{stable}}$

 ε, β^+ radiations

 ε K, ε L, ε M, ε N: Additional information 1. av E β : Additional information 2.

E(decay)	E(level)	$I\beta^+$ [†]	Ιε [†]	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(2220.5 15)	0	99.803 5	0.197 5	3.67174 44	100	av E β =492.21 <i>12</i> ; ε K=0.00182 <i>5</i> ; ε L=1.466×10 ⁻⁴ <i>42</i> C1=0.001 <i>24</i> (1958Da09). Cexp(W) = 1+C ₁ W.

[†] Absolute intensity per 100 decays.