¹H(¹²B,p):res 2008Sk06

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024

2008Sk06: XUNDL dataset compiled by McMaster, 2008.

A $E(^{12}B)=44.6$ MeV beam from the Notre Dame TwinSol RIB facility impinged on a 16.97 mg/cm² CH₂ target that stopped the beam. Scattered protons were detected at $\theta=7.5^{\circ}$ and 15° using two Si Δ E-E telescopes. The excitation function for elastic proton scattering at $E_{c.m.}=1.25$ -3.2 MeV was obtained using a thick-target inverse kinematics technique. Resonances were deduced and analyzed using an R-matrix analysis. Based on comparison with ¹³O and ¹³B, resonances at $E_{c.m.}=0.87$ (l=0, ($l/2^+$), $\Gamma=190$ keV) and 1.07 MeV (l=0+2, ($3/2^+$), $\Gamma=90$ keV) are assumed in the unmeasured low-energy region to account for the excess strength in this area.

Potential analog states in ¹³N and ¹³C are discussed.

¹³C Levels

$E(level)^{\dagger}$	$J^{\pi \ddagger}$	Γ^{\ddagger}	L [‡]	$E(c.m.) (MeV)^{\ddagger}$	Comments
19110?	$(3/2, 1/2, 5/2)^{-}$	<30 keV	1	1.58	T=3/2
					J^{π} : $3/2^{-}$ is preferred.
19740	$(3/2, 5/2, 7/2)^+$	200 keV	0,2	2.20	T=3/2
					J^{π} : $3/2^+$ is preferred.
					E(level): If $J^{\pi} = 5/2^+$ or $7/2^+$ then E _{c.m.} = 2350 keV
					$(E_x = 19900 \text{ keV}).$
20130	$(5/2, 1/2, 3/2)^{-}$	120 keV	1	2.60	T=3/2
					J^{π} : 5/2 ⁻ is preferred.
20300	$(5/2, 3/2, 7/2)^+$	170 keV	0,2	2.77	T=3/2
					J^{π} : 5/2 ⁺ is preferred.

[†] S(p)+E(c.m.), where S(p) of ${}^{13}C=17533.4$ 13 (2021Wa16).

[‡] From R-matrix analysis.