17 N $\beta^- \alpha$ decay 1994Do08

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024

Parent: ¹⁷N: E=0; J^{π}=1/2⁻; T_{1/2}=4.173 s 4; Q($\beta^{-}\alpha$)=2320 15; % $\beta^{-}\alpha$ decay=0.0025 4

 17 N-T_{1/2}: From weighted average of (1976Oh05,1972Al42).

¹⁷N-Q($\beta^{-}\alpha$): From (2021Wa16).

1993Bu21: ¹⁷N($\beta^{-}\alpha$); measured β -delayed E_{α}, I_{α}. The alphas (E_{α}=1.24 and 1.40 MeV) result from decay of the 7.99 MeV and 8.20 MeV states in ¹⁷O. More details in (1994Do08).

1994Do08: A thick target was bombarded by 600 MeV protons to produce ¹⁷N ions that were selected by the TISOL separator. The ¹⁷N beam was implanted into a thin carbon-foil collector. Thin surface barrier detector pairs counted the decay α particles in coincidence with ¹³C recoils.

 $T_{1/2}$ =3.92 s 44 was reported which is in good agreement of 4.173 s 4 (weighted average of 1976Oh05: 4174 ms 4 and 1972Al42: 4169 ms 8). The α spectrum was reasonably fitted with a K-matrix parametrization using the known resonances at ¹⁷O*(7.985 and 8.204 MeV). Although two states are sufficient to fit the α -spectrum, the possibility of decay from the broad ¹⁷O*(7.56) state cannot be entirely discounted.

A small contamination of ¹⁸N in the beam was used to make a relative normalization of the ¹⁷N and ¹⁸N activities; then using the lifetimes and ¹⁸N decay results from (1989Zh04), the absolute $\beta\alpha$ branching of ¹⁷N was determined to be (2.5 4)×10⁻⁵. The $\beta\alpha$ branching intensities to ¹⁷O*(7.985, 8.204) were found to be (1.5 3)×10⁻⁵ and (9.8 20)×10⁻⁶, respectively. An upper limit of delayed α decay intensity from ¹⁷O*(7.56), <6.9×10⁻⁷, is deduced; though the small Γ_{α}/Γ =0.0002 for this state corresponds to a rather large I <3.5% beta-decay intensity to this state that could be observed in other decay channels. Another possible level at ¹⁷O*(8.18) could influence the $\beta\alpha$ decay, but the best fit in this experiment showed a minimal and excludable effect.

¹³C Levels

E(level)	J^{π}
0.0	1/2-

Delayed Alphas (13C)

$E(\alpha)$	E(¹³ C)	$I(\alpha)^{\dagger}$	E(¹⁷ O)
≈918	0.0	<6.9×10 ⁻⁵	7559
1246 12	0.0	1.5×10^{-3} 3	7990
1410 5	0.0	9.8×10 ⁻⁴ 20	8200

[†] Absolute intensity per 100 decays.

¹⁷N $\beta^- \alpha$ decay 1994Do08

Decay Scheme

 $I(\alpha)$ Intensities: $I(\alpha)$ per 100 parent decays

