14 N(d, ³He)

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024			

1968Ga13: ¹⁴N(d,³He) E=28 MeV; measured $\sigma(\theta)$ to g.s; DWBA analysis for comparison of (d,³He),(d,t) cross sections. 1968Hi01: ¹⁴N(d,³He) E=52 MeV; measured $\sigma(E(^{3}He),\theta)$, ¹³C deduced levels, J, π , S. Natural targets.

1970PiZV: ¹⁴N(d,³He) E=20.13 MeV; measured $\sigma(\theta)$; deduced optical model parameters. 1974Lu06: ¹⁴N(pol. d,³He) E=15 MeV; measured $\sigma(E(^{3}He),\theta)$, A(θ). ¹³C g.s. deduced S, J-dependence, J-admixtures. DWBA analysis. Natural, enriched targets.

1981Ma14: ¹⁴N(pol. d,³He) E=52 MeV; measured iT₁₁(E(³He), θ) for ¹³C*(0,7.55 MeV). Enriched targets. DWBA, Nilsson model analyses.

¹³C Levels

E(level)	J^{π}	C^2S	Comments
0‡	1/2-	0.63	L=1 (1974Lu06).
3.09×10 ^{3#}			
3.68×10^3	3/2-	0.16	E(level): The 3.85 MeV; $J^{\pi}=5/2^+$ state is not resolved from the 3.68 MeV state, but it is reasonable to assume only a small contribution to the 3.7 MeV group with regard to the weak excitation of the other positive-parity states (1968Hi01).
6.87×10 ^{3#}		1.55	
7.55×10^3	$5/2^{-}$	0.63	
8.85×10 ³	1/2-		The sum of the cross section of the ${}^{13}C^*(8.85+9.51)$ states is identical with the angular distribution of the unresolved states that appear at ${}^{13}N^*(9.2)$.
9.51×10^{3}	$(3/2^{-})$	0.13	J^{π} : 9/2 ⁺ is accepted in the Adopted Levels.
			J^{π} : In (1968Hi01), the known ${}^{13}N^*(8.9+9.4 \text{ MeV})$ states are unresolved, but their angular distributions and cross section sum are compared with the resolved ${}^{13}C^*(8.9+9.5 \text{ MeV})$ states. The authors first indicate the ${}^{13}C^*(9.5 \text{ MeV})$ state does not have a "pick-up pattern" as would be expected, and later they suggest a complex configuration that can explain the spectroscopic factor. The discussion shows reservations, and their conclusions are based on comparison with an unresolved group of states in ${}^{13}N$.
11.90×10 ³ 15	3/2-	0.95	

[†] From comparison of (d,³He) and (d,t) mirror states in (1968Hi01) $\Delta E \approx 100$ keV. C²S is from Figure 7 of (1968Hi01).

[‡] See also (1974Lu06). The spectroscopic factors, C²S, extracted for the reaction ${}^{14}N(d, {}^{3}He){}^{13}C_{g.s.}$ agree within 5% to those for the reaction ${}^{14}N(d,t){}^{13}N_{g.s.}$.

Weakly populated.