14 B β^- n decay 1994ReZZ

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024

Parent: ¹⁴B: E=0; $J^{\pi}=2^{-}$; $T_{1/2}=12.6$ ms 6; $Q(\beta^{-}n)=12467$ 21; $\%\beta^{-}n$ decay=6.1 3

¹⁴B-T_{1/2}: Weighted average (external errors) of $T_{1/2}$ =16.1 ms *12*: (1974Al11), 12.8 ms *8*: (1986Cu01) and 12.4 ms *3*: (1994ReZZ, see other results in 1991Re02, 1993ReZX, 1994KiZU, 1995ReZZ, 2008ReZZ). See also 13.7 ms *6* in (1987IsZZ).

1991Re02: ¹⁴B(β^- n); measured T_{1/2}, neutron emission probability, upper limits. TOF isochronous spectrometer, ion-neutron delayed coincidence.

1993ReZX: Spallation products from 800 MeV proton bombardment of a ²³²Th target were captured by a transport line with a mass-to-charge filter and transferred to the TOFI spectrometer at LAMPF. The beamline was separately tuned to transport a number of different nuclides. The neutrons were detected in a polyethylene moderated ³He counter, and standard techniques were implemented. The β -delayed neutron probabilities were deduced from analysis of the number of implanted ions (per beam pulse) and the rate of β -delayed neutrons detected in the zero-threshold counter.

An associated conference report (1994ReZZ) indicates the β -delayed neutron probability P_n=6.1% 3 and T_{1/2} = 12.4 ms 3.

Results presented in (1993ReZX) analyzed the data measured in the polyethylene moderated ³He counter and deduced a general value for the energy of neutrons emitted from the decay; $E_n=1.38 \text{ MeV} + 86-65$. The value $E_n=1.3 \text{ MeV} 3$ is published in (1994ReZZ).

1993Ok02: ${}^{14}B(\beta^{-}n)$; measured NMR spectra; deduced g factor.

1994KiZU: ¹⁴B(β^{-} n); measured decay products, TOF, En, In, E_{α}, I_{α}; deduced T_{1/2}, neutron emission probability. Comparison with available data.

1995ReZZ: ¹⁴B(β ⁻n); measured neutron emission probabilities. TOF isochronous spectrometer.

1996OgZY: ¹⁴B(β^{-}); measured E_{β}, β -delayed E_{γ}.

¹³C Levels

E(level)	$J^{\pi \dagger}$	
0.0	1/2-	

^{\dagger} From Adopted Levels for ¹³C.

Delayed Neutrons (13C)

 $\frac{E(^{13}C)}{0.0} \quad \frac{I(n)^{\dagger}}{6.1 \ 3}$

[†] Absolute intensity per 100 decays.

¹⁴B-Q(β ⁻n): From (2021Wa16).