¹³C(**p**,**p**),(**p**,**p**'),(**p**,**p**n)

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024

¹⁹⁵⁷Ba29: ¹³C(p,p'), angular distributions of the 3.09 MeV γ -rays are isotropic for Ep=3.7 to 4.2 MeV, consistent with the assignment J=1/2 to ¹³C*(3.09). Angular distributions of the 3.68 MeV radiation have also been studied near the Ep=4.5 MeV resonance.

- 1957Zi09: ¹³C(p,p) E=1.5-3.4 MeV; measured reaction products, Ep, Ip, $\sigma(\theta)$ for θ =45° to 148.9°.
- 1960Ba35: ¹³C(p,p' γ) E=3.6-5 MeV; angular distributions of the 3.09 MeV γ -rays are isotropic for up to E_p=5 MeV consistent with the assignment J=1/2 for the ground state.
- **1966Ge03**: ¹³C(p,p₀) E=1.55-2.38 MeV; measured $\sigma(\theta)$ for $\theta_{c.m.}=20^{\circ}$ to 170°.
- 1968Ri16: ${}^{13}C(p,p')$ E=4.1,4.125,4.55 MeV; measured Doppler-shift attenuation. Deduced T_{1/2} of ${}^{13}C^*(3.09, 3.68 \text{ MeV})$.

1969Gu02: ¹³C(p,p) E=7 MeV; measured $\sigma(Ep,\theta)$, P(θ) for $\theta_{c.m.} \approx 25^{\circ}$ to 160°; deduced optical parameters. Natural, enriched targets.

1971Ot02: ¹³C(p,pn) E=7.9-12.5 MeV; measured σ (E;Ep, θ (p), θ (n)); deduced singlet deuteron contribution. One or more ¹³C states at E_x=7.5 MeV seem to be involved in the sequential decay.

1971Ri13: ¹³C(p,p' γ (3.09,3.68,3.85 MeV)) E=3-17 MeV; measured σ (E).

- 1971Va29: ¹³C(p,p₁) E=6.36,6.48 MeV; measured σ (Ep', θ).
- 1972Gr02: ¹³C(pol. p,p_{0,1}) E=30.4 MeV; measured $\sigma(\theta)$, P(θ), analyzing power(θ) for $\theta_{c.m.}=25^{\circ}$ to 170°; formulated effective interaction. Enriched targets.
- 1973DeYW, 1975De26: ¹³C(p,p),(p,p' γ),(p,d) E=6 MeV; measured σ (Ep, θ). Deduced level configurations.
- 1974Mi05: ¹³C(p,pn) E=46 MeV; measured σ (Ep, θ).
- 1978B102: ¹³C(p,p') E=0.8 GeV; measured $\sigma(\theta)$ for $\theta_{c.m.}=2^{\circ}$ to 40°. Reported states up to 11.9 MeV. Discussed deformation length. Optical potential, DWBA analysis.
- 1978We13: ¹³C(pol. p,p₀), measured $\sigma(E,\theta)$ for E=9.1-18.4 MeV and for θ =30° to 155°, measured A(E, θ) for E=10-17.5 MeV. See further discussion in (1985Pe10).
- 1979Al26: ¹³C(p,p₀) E=1 GeV; measured $\sigma(\theta)$ for $\theta_{c.m.}=5^{\circ}$ to 25°. Deduced nuclear density parameters, quadrupole effects. Glauber theory.
- 1980Fa07: ¹³C(p,p),(p,p') E=35.2 MeV; measured $\sigma(\theta)$ for $\theta_{c.m.} \approx 30^{\circ}$ to 180°; deduced optical-model parameters.

1981Me02: ¹³C(pol. p,p) E=200 MeV; measured $\sigma(\theta)$, analyzing power vs θ for θ =10° to 120°.

- 1982Co08: ¹³C(p,p),(p,p') E=135 MeV; measured $\sigma(\theta)$ for $\theta=8^{\circ}$ to 80° and for states below E_x=11 MeV. Deduced possible configurations of ¹³C^{*}(8.86, 11.08 MeV). Optical model, DWBA analyses.
- 1982Ri05: ¹³C(p,p') E=135 MeV; measured $\sigma(\theta)$ for $\theta_{c.m.}=10^{\circ}$ to 85°. Analyzed angular momentum transfer, configuration of ¹³C^{*}(9.50). Microscopic DWBA analysis. Deduced $J^{\pi}=9/2^+$.
- 1984Se12: ¹³C(pol. p,p') E=547 MeV; measured $\sigma(\text{Ep'})$, $\sigma(\theta)$, analyzing power vs θ for $\theta_{\text{c.m.}}=5^{\circ}$ to 35° and for ¹³C^{*}(0,3.09, 3.68,3.86,6.86,7.55,8.86,9.50). DWIA analysis, shell model transition densities.
- 1985All6: ¹³C(p,p₀) E=1 GeV; measured $\sigma(\theta)$; deduced model parameters, rms matter radii =2.394 fm.
- 1985B122: ¹³C(p,p₀),(pol. p,p₀) E=0.8 GeV; measured $\sigma(\theta)$, analyzing power vs θ for $\theta_{c.m.} \approx 5^{\circ}$ to 50°; deduced optical potential parameters.
- 1985Ki07: ¹³C(p,p' γ) E=2.4-4.2 MeV; measured thick target relative γ yields, E_{γ}, I_{γ}. Particle induced prompt gamma emission analysis.
- 1986Oh03: ¹³C(pol. p,p') E=35 MeV; measured $\sigma(\theta)$, A(θ) for $\theta_{c.m.} \approx 20^{\circ}$ to 120° and for ¹³C^{*}(0,3.09, 3.68,3.86). Compared with analogous (p,n) reactions, analyzed isoscalar component. Enriched target. DWBA analysis.

1988Ba30: ¹³C(p,p₀) E=30.95 MeV; measured $\sigma(\theta)$ for θ =10° to 160°.

1988Co05: ¹³C(p,p),(p,p') E=135 MeV; ¹³C(pol. p, p),(pol. p,p') E=119 MeV; measured $\sigma(\theta)$, A(θ) for $\theta_{c.m.}$ ≈5° to 90°.

- Analyzed states up to 23 MeV. Optical model, DWA analyses, density-dependent t-matrices.
- 1989Vo05: ¹³C(pol. p,p₀) E=72 MeV; measured $\sigma(\theta)$, A(y)(θ) for $\theta \approx 20^{\circ}$ to 160°; deduced optical model potential.
- 1990Ho06: ¹³C(pol. p,p) E=494 MeV; measured $\sigma(\theta)$, analyzing powers, spin rotation depolarization observables for $\theta \approx 5^{\circ}$ to 37°; deduced phenomenological Dirac optical potentials. Calculated retativistic impulse approximation optical potentials.
- 1990Ho22: ¹³C(pol. p,p) E=497.5 MeV; measured spin correlation parameter, target analyzing power vs θ for $\theta \approx 12^{\circ}$ to 30° . Dynamic nuclear polarization technique, polarized, cooled target, enriched ethylene glycol target.
- 1990Vo02,1991Vo03: ¹³C(pol. p,p₀) E=72 MeV; measured depolarization parameter vs θ for $\theta_{c.m.} \approx 34^{\circ}$ to 69° ; deduced nucleon-nucleus, spin-spin interaction evidence and effects. Optical model.

1993YuZX: ¹³C(p,p) E=200 MeV; measured $\sigma(\theta)$ at backward angles; deduced optical potential parameters. DWIA analysis. 1996Ho08: ¹³C(pol. p,p) E=500 MeV; measured polarization transfer parameter D(NN). Non-relativistic DWBA analysis, coupled-channels Dirac, relativistic DWBA analyses.

1996Yu02: ¹³C(p,p) E=200 MeV; measured spectra, $\sigma(\theta)$ for $\theta_{c.m.}=160^{\circ}$ to 180°; deduced model parameters. DWIA analysis.

1998Hu29: ¹H(¹³C, ¹³C), ¹³C(p,p) E=2.8-11.2 MeV; measured products, Deduced $\sigma(\theta)$. E_{res}=0.511 MeV. Thick Target Inverse Kinematics.

2003An11: ¹³C(p,p) E=22 MeV; ¹³C(p,p') E=22 MeV; measured $\sigma(\theta)$ for $\theta=9^{\circ}$ to 130°. Deduced ¹³C^{*}(3.09 MeV) neutron halo structure, related features. Microscopic DWBA analysis, compared with related data.

2013Ba56: ¹³C(p,p) E=0.8-2.4 MeV; measured reaction products, Ep, Ip; deduced σ , yields; compared with available data.

2022Ci07: ¹³C(p,p') Ep=135 MeV at the CCB at IFJ PAN in Krakow. Populated the $E_x=21.47$ MeV stretched resonance in ¹³C and analyzed its decay branches and structure. Scattered protons were measured at $\theta=36^{\circ}$ using the KRATTA array, while branches for particle emission were deduced either by direct measurement with a position sensitive Si detector or by measurement of γ rays from the deexcitation of the ¹²B or ¹²C remnants. Evidence for neutron and proton decay branches was observed, but no evidence was found for *d* or α emission. Neutron emission to proceeds to ¹²C(15.11 MeV: J=1⁺,T=1), suggesting T=3/2 for the ¹³C state. Results were compared with a gamow Shell Model calculation; observed decay branches are consistent with $J^{\pi}=7/2^+$, but a $7/2^+ + 9/2^+$ doublet cannot be excluded.

2023Hu21: ¹³C(p,p') E=800 MeV; analyzed small angle elastic scattering data; deduced matter density distributions and r.m.s. matter radii. The free-parameter fit for ¹³C yielded R^{r.m.s.}_m=2.374 fm *12*.

Theory:

1973Ka04: ¹³C(p,p'), calculated integral cross sections for low-lying levels.

1974Av02: ¹³C(p,d),(p,pn) E=12,17 MeV; calculated σ (Ed, θ), σ (Ep, θ); deduced singlet deuteron effects.

1978Al36: ¹³C(p,p) E=1 GeV; calculated $\sigma(\theta)$. Glauber theory, n, p-density parameters from electron scattering data.

- 1982Ba14: ¹³C(p,p') E=6 MeV; calculated $\sigma(\theta)$. Triangle diagram method, Coulomb effects.
- 1983Pe14: ¹³C(p,p') E=26.1 MeV; analyzed $\sigma(\theta)$. ¹³C levels deduced differences in excitation probabilities from other charge exchange reaction data.

1986AmZX: ¹³C(p,p), analyzed form factors, $\sigma(\theta)$; deduced structure effects.

- 1986Ra05: ¹³C(pol. p,p) E=500 MeV; calculated $\sigma(\theta)$, polarization, other parameters vs θ ; deduced relativistic effects role.
- 1988GoZH: ¹³C(p,p) E=10-20 MeV; analyzed $\sigma(\theta)$; deduced optical model parameters.
- 1988KuZL: ¹³C(p,p),(pol. p,p) E=0.8 GeV; calculated $\sigma(\theta)$, A(θ). Multi-scattering diffraction theory.
- 1988Ra08: ¹³C(pol. p,p) E=500 MeV; calculated $\sigma(\theta)$, P(θ), spin observables; deduced target nucleus relativistic effects role. Relativistic dynamics, pseudovector coupling.
- 1989Am02: ¹³C(p,p') E=135 MeV; analyzed data; deduced degree of M1 quenching. Shell model, medium corrected DWA.

1989Am05: ¹³C(pol. p,p) E=547 MeV; calculated $\sigma(\theta)$, analyzing power vs θ . Nonrelativistic optical model potential.

1989BeXT: ¹³C(pol. p,p),(pol. p,p') E=135,547,800 MeV; calculated $\sigma(\theta,E)$, analyzing power vs θ . Diffraction model.

- 1989Go14: ¹³C(p,p) E=13.5-17.5 MeV; calculated $\sigma(\theta)$, P(θ); deduced model parameters. Phenomenological, folding model potentials.
- 1989Ku07: ¹³C(pol. p,p) E=547-1000 MeV; calculated $\sigma(\theta)$, polarization observables vs θ . Multiple diffraction scattering theory.
- 1989Ku14: ¹³C(p,p) E=550,800 MeV; calculated $\sigma(\theta)$, polarization observables vs θ . Polarized target.

1989Ku32: ¹³C(pol. p,p) E=0.8,1 GeV; calculated $\sigma(\theta)$, analyzing power vs θ . Diffraction model.

1990Du01: ¹³C(pol. p,p) E=1.13-1.17 MeV; calculated σ (E), analyzing power vs E.

1990He32: ¹³C(pol. p,p) E=65 MeV; analyzed depolarization parameter; deduced nucleon-nucleus spin-spin interaction features.

1990St32: ¹³C(pol. p,p) E=65,72 MeV; compiled data analysis; deduced Gamow-Teller type transition extraction possibility.

1991Br28: ¹³C(p,p),(pol. p,p) E≤1.17 MeV; calculated $\sigma(\theta)$, analyzing power vs E. Double-folding interaction potential, multi-step direct compound nuclear reactions.

1991Mc03: ¹³C(pol. p,p) E=497 MeV; compiled, reviewed data analyses; deduced nucleon-nucleus interaction features, spin-effects, spin-isospin modes role.

1992Ra02: ¹³C(pol. p,p) E=497.5 MeV; calculated polarization observables. Shell model configurations. Pauli blocking.

1993By02: ¹³C(p,p) E=72 MeV; calculated $\sigma(\theta)$; deduced nucleon-nucleon bound state role.

1993Ra05: ¹³C(pol. p,p) E=500 MeV; calculated $\sigma(\theta)$, analyzing power, polarization transfer observables vs θ . Relativistic impulse approximation, density dependent nucleon-nucleon effective interaction.

1994Me14: ¹³C(pol. p,p) E=500,574 MeV; calculated $\sigma(\theta)$, depolarization parameter, other spin observables vs θ . Relativistic Schrodinger equation, microscopic, momentum space optical potentials.

¹³C(p,p),(p,p'),(p,pn) (continued)

1997Do01: ¹³C(pol. p,p) E=200 MeV; analyzed $\sigma(\theta)$, polarization observables data. Microscopic model.

1998Ki17: ¹³C(p,p) E=1 GeV; analyzed $\sigma(\theta)$; deduced neutron halo role. Glauber theory.

1998Kr25: ¹³C(p,p) E=10,30,50 MeV; calculated optical potentials; deduced spin-orbit, spin-spin, tensor contributions. Hartree-Fock method, Skyrme forces.

1999Kr12: ¹³C(p,p), calculated optical potential for nucleus-nucleon scattering. Hartree-Fock theory.

2000De61: ¹³C(p,p) E=30 MeV; E=40 MeV; calculated $\sigma(\theta)$, Ay(θ). Optical potential, comparison with data.

2001Mi20: ¹³C(pol. p,p), E*≈9 MeV; calculated longitudinal and transverse analyzing powers.

2002Mo28: ¹³C(p,p) E=10 MeV; calculated $\sigma(\theta)$; deduced continuum effects. Continuum discretized coupled channels formalism.

2004Be16: ¹³C(p,p) E=500,547,800 MeV; calculated $\sigma(\theta)$, polarization observables. Multiple diffractive scattering theory, comparison with data.

2004Be35: ¹³C(p,p) E=500 MeV; calculated $\sigma(\theta)$, analyzing powers, other polarization observables.

2005Ko28: ¹³C(p,p) E \approx 800-1100 MeV; analyzed $\sigma(\theta)$; deduced black-sphere radius parameters.

2009De02: ¹³C(p,p) E=35 MeV; calculated $\sigma(\theta)$, binding energies. Momentum-space three-body Fadeev-like equations. Comparison with experimental data.

2009De07: ¹³C(p,p) E=35 MeV; calculated differential cross sections, analyzing powers for polarized beam using local and nonlocal optical potentials parameters in the framework of Faddeev type scattering equations. Comparison with experimental data.

2009De13: ¹³C(pol. p,p) E=17.5, 35 MeV; calculated $\sigma(\theta)$, analyzing powers using Faddeev-type model. Compared various optical potentials with experimental data.

2009We04: ¹³C(p,p) E=25-155 MeV; analyzed σ , $\sigma(\theta)$ using isospin dependent global nucleon-nucleus optical model. ¹³C(pol. p,p), E=30-152 MeV; analyzed vector analyzing powers using isospin dependent global nucleon-nucleus optical model.

2012Du11: ¹³C(p,p) E=250-770 keV; analyzed $\sigma(\theta)$ measurements; deduced S-wave phase shift, triplet states in the resonance region.

2015Be12: ¹³C(p,p),(p,p') E<200 MeV; calculated charge radii and densities, form factors, $\sigma(\theta)$, scattering parameters, polarization. Multiple diffraction scattering theory (MDST) and the α -cluster model with dispersion, comparison with experimental data.

2017Ka45: ¹³C(p,p) E=71,100,200,300,425,550,650 MeV; calculated σ , $\sigma(\theta)$. Comparison with available data.

2018We08: ¹³C(p,p) E=70,72 MeV; calculated $\sigma(\theta)$, σ ; deduced optical model parameters. Comparison with experimental data.

2018Zh31: ¹³C(p,p') E=0.6,0.8,1.0 GeV; calculated $\sigma(\theta)$, analyzing power to $(1/2)^+$ and $(5/2)^+$ levels using Glauber Multiple Scattering Theory and DWBA. Compared with available data.

2021An01, 2021An13: ¹³C(p,p) E<5 MeV; calculated σ ; deduced optical model potential, S-factors in the folding model, using a realistic density dependent nucleon-nucleon interaction.

2022Vo02: ¹³C(p,p) E=200 MeV; calculated $\sigma(\theta)$ and $A_v(\theta)$.

¹³C Levels

E(level) [†]	J ^π ‡	T or $\Gamma^{\#}$	L	Comments
0	1/2-			E(level): See (1978Bl02,1982Co08,1984Se12,1985Ki07,1986Oh03,1988Co05,2003An11). Analyzing power A_v was also measured (1984Se12).
3089	1/2+	<6.93 fs		 B(E1)⁺=0.00014 (1988Co05) E(level): See (1957Ba29, 1960Ba35, 1968Ri16, 1978Bl02, 1982Co08, 1984Se12, 1985Ki07, 1986Oh03, 1988Co05, 2003An11). The analysis in (2003An11) indicates the existence of neutron halo in this state. T_{1/2}: From τ<10 fs (1968Ri16).
3685	3/2-	<18 fs	2	 B(M1)↑=1.42 (1988Co05); B(E2)↑=0.131 (1988Co05) B(E2)↑: See also 0.066 (1982Co08). E(level): See (1957Ba29, 1960Ba35, 1968Ri16, 1978Bl02, 1982Co08, 1984Se12, 1986Oh03, 1988Co05, 2003An11). Analyzing power A_y was also measured (1984Se12). T_{1/2}: From τ<26 fs (1968Ri16). L: transfer L (1984Se12). Spin transfer ΔS=0 (1984Se12).
3854	5/2+		3	B(E1)↑=0.0303 (1988C005); B(M2)↑=0.131 E(level): See (1982C008,1984Se12,1986Oh03,1988C005,2003An11). Analyzing power A _y was also measured (1984Se12). L: transfer L (1984Se12). Spin transfer ΔS=0 (1984Se12).
6864	5/2+			$B(M2)\uparrow=0.0153 (1988Co05)$ E(level): See (1978B102,1982Co08: weak,1984Se12,1988Co05). Analyzing power A _y was

Continued on next page (footnotes at end of table)

¹³C(p,p),(p,p'),(p,pn) (continued)

¹³C Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T or $\Gamma^{\#}$	L	Comments
7547	5/2-		2	also measured (1984Se12). B(E2) $\uparrow=0.175$ (1988Co05); B(M3) $\uparrow=0.518$ B(E2) \uparrow : See also 0.058 (1982Co08). E(level): See (1978B102,1982Co08,1988Co05). L: transfer L (1984Se12). Spin transfer Δ S=0 (1984Se12).
7686 8200				
8860	1/2-		0	B(M1)↑=0.418 (1988Co05) E(level): See (1982Co08,1984Se12,1988Co05). Analyzing power A _y was also measured (1984Se12).
9500	9/2+		4	L: Transfer L (1984Se12). Spin transfer $\Delta S=0$ (1984Se12). E(level): See (1982Co08,1982Ri05,1984Se12,1988Co05). Analyzing power A _y was also measured (1984Se12). J ^{π} : See also (1982Ri05).
9897 10753 10818	3/2 ⁻ 7/2 ⁻			L: From (1982Ri05: a pure $1p_{3/2}$ to $1d_{5/2}$ neutron transition). B(M1) \uparrow =0.058 (1988Co05); B(E2) \uparrow =0.0016 (1988Co05)
10996 11080 11748	1/2-			B(M1)↑=0.065 (1988Co05)
11851 11920 <i>60</i>	7/2 ⁺ (5/2 ⁺)	200 keV		J^{π} : Assigned by (1988Co05). E(level): From (1978Bl02); see also (1988Co05). J^{π} : Assigned by (1988Co05); see also $J^{\pi}=(5/2,7/2)^+$ (1978Bl02).
12106 12190 <i>10</i>	≤5/2 ≤5/2	80 keV 110 keV <i>50</i>		 J^π: Assigned by (1988Co05). E(level),Γ: from (1988Co05, S. Collins, Ph.D. thesis, and B. Spicer, private communication). M₂. Assigned by (1088Co05).
12438 13280? 13410 135702		160 keV		 F: Assigned by (1988C005). E(level): Possibly seen at Ep=135 MeV (1988C005). E(level): Possibly seen at Ep=135 MeV (1988C005).
13760? 14130 14300		210 keV		E(level): Possibly seen at $Ep=135$ MeV (1988Co05). E(level): Possibly seen at $Ep=135$ MeV (1988Co05).
14582 14583 15108	$(7/2,9/2)^+$ $(5/2^+)$ $3/2^-$	250 keV 410 keV		J^{π} : Assigned by (1988Co05). J^{π} : Assigned by (1988Co05). B(M1) \uparrow =1 12 (1988Co05): B(E2) \uparrow =0 0189 (1988Co05).
	0,2			T=3/2 T: Value listed in (1982Co08).
15526		220 keV		E(level): See (1982Co08,1988Co05). Г: From (1988Co05).
16080	$(7/2^+)$	220 keV		E(level),Γ: From (1988Co05). J^{π} : Assigned by (1988Co05).
16150 16950? 173602				E(level): Reported in (1982Co08) and possibly seen at Ep=135 MeV (1988Co05). E(level): Possibly seen at Ep=135 MeV (1988Co05). E(level): Possibly seen at Ep=135 MeV (1988Co05).
17699	(3/2 ⁻ ,5/2)			J^{π} : Assigned by (1988Co05); L=2 or 3 was consistent, but 7/2 ⁺ was considered unlikely because of the shape at small angles.
18300? 18699	(3/2,5/2)+			E(level): Possibly seen at Ep=135 MeV (1988Co05). E(level): See (1988Co05). J^{π} : Assigned by (1988Co05).
19500 19900? 20021 20429				E(level): Possibly seen at Ep=135 MeV (1988Co05).

¹³C(p,p),(p,p'),(p,pn) (continued)

¹³C Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T or $\Gamma^{\#}$	Comments
20.93×10 ³ 10		0.24 MeV 10	E(level),Γ: from (1988Co05, S. Collins, Ph.D. thesis, and B. Spicer, private communication).
21280			
21466	$(7/2, 9/2)^+$	270 keV 20	T=3/2
			$\Gamma_{\rm n}/\Gamma=0.24~5$
			$\Gamma_{p0}/\Gamma \le 0.23; \ \Gamma_{p1}/\Gamma = 0.69 \ 6$
			Γ : Γ and partial widths from (2022Ci07).
			$\Gamma_{\rm p}: \Gamma_{\rm p2+3}/\Gamma=0.07$ 2.
			$\Gamma_{\rm n}$: Decay is to ¹² C(15.11 MeV: $J^{\pi}=1^+$, T=1).
			T: From (2022Ci07).
			J^{π} : Assigned by (1988Co05).
21810	$\geq 5/2$		J^{π} : Assigned by (1988Co05).
22.20×10 ³ 10	≤5/2	1.1 MeV 5	E(level),Γ: from (1988Co05, S. Collins, Ph.D. thesis, and B. Spicer, private communication).
			J^{π} : Assigned by (1988Co05).
23000	$\leq 5/2$		J^{π} : Assigned by (1988Co05).

 [†] Level-energy values listed in, for example, (1982Co08,1988Co05). Angular distributions were studied.
 [‡] Values from, for example, DWBA analysis of (p,p') and (pol. p,p') angular distributions from (1982Co08,1988Co05) except where noted. # Γ values from (1988Co05) except where noted.

 $\gamma(^{13}\mathrm{C})$

Eγ	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	Comments
3089	3089	1/2+	0	1/2-		F_{γ} >0.066 eV (1968Ri16: Doppler shift method). E_{γ} : See also (1985Ki07).
						Angular distributions of E_{γ} =3.09 MeV are isotropic, consistent with the J=1/2 assignment for 3.09 MeV state (1957Ba29,1960Ba35).
3685	3685	3/2-	0	1/2-	E2	Γ_{γ} >0.025 eV (1968Ri16: Doppler shift method). Angular distributions of E_{γ} were studied (1957Ba29, 1960Ba35).

$\frac{13}{\mathbf{C}(\mathbf{p},\mathbf{p}),(\mathbf{p},\mathbf{p}'),(\mathbf{p},\mathbf{pn})}$

Level Scheme

