History

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024	

- 1959Fu62: ¹³C(α, α') E=20 MeV; scattering angle θ =45°, ¹³C*(3.7 MeV) observed.
- 1960St02: ¹³C(α, α'); measured not abstracted; ¹³C deduced nuclear properties.
- 1963Ba05: ¹³C(α, α'); measured not abstracted; deduced nuclear properties.
- 1966Ha19: ¹³C(α, α'), (α, α') E=40.5 MeV; angular distributions were measured for a large number of excited states of ¹³C.
- 1967Ar17: ¹³C(α, α'), (α, α') E=33.4 MeV; angular distributions of elastic and inelastic scatterings were measured.
- 1971Co14: ¹³C(α, α') E=15,18,20,28.4 MeV; measured $\sigma(\theta)$; deduced optical model parameters. Enriched targets.
- 1972Ku19,1974Ch58,1974Ku15: ¹³C(α, α') E=26.6 MeV; measured $\sigma(\theta)$.
- 1973Ku18: ¹³C(α, α') E=18,19,22,24,25,26.6 MeV; measured σ (E; θ); deduced reaction mechanism.
- 1974Fe08: ¹³C(α, α'),(α, α') E=24 MeV; measured $\sigma(E_{\alpha'}, \theta)$.
- 1976Ja17: ¹³C(α, α') E=65 MeV; measured $\sigma(\theta)$.
- 1976Pa05: ${}^{13}C(\alpha, \alpha')$ E=30.9, 50.5 MeV; analyzed deformation.
- 1980Fu04: ¹³C(α, α') E=22,36 MeV; measured $\sigma(E_{\alpha}, \theta)$. The line shape of the ¹³C*(7.686 MeV;3/2⁺) resonance is measured. Enriched target.
- 1981Pe08: ¹³C(α, α') E=35.5 MeV; measured $\sigma(E_{\alpha}, \theta)$. ¹³C levels deduced isoscalar, isovector transition amplitude ratio. DWBA, CCBA analyses.
- 1983Pi07: ¹³C($\alpha, \alpha' \gamma$) E=32 MeV; measured E_{γ}, I_{γ}. Low energy prompt γ measurement technique.
- 1984De44: ¹³C(α, α') E=24-35 MeV; measured $\alpha(^{12}C)(\theta, \phi)$. ¹³C level deduced substate population probabilities.
- 1984DeZR: ¹³C(α, α') E not given; measured (recoil nucleus)(α)-coin. ¹³C levels deduced Γ_{γ}/Γ .
- 1985De11: 13C($\alpha, \alpha' \gamma$) E=24 MeV; measured E_{γ}, I_{γ}, recoil. ¹³C levels deduced Γ_{γ}/Γ .
- 1987Ab03: ¹³C(α, α_0) E=48.7, 54.1 MeV; measured $\sigma(\theta)$. Δ E-E telescopes. Optical model analyses.
- 1987Bu27: ¹³C(α, α') E=50.5 MeV; measured σ .
- 1993AtZZ: ¹³C(α, α') E=54.1,104,155 MeV; ¹³C(α, α') E=54.1,104,155 MeV; measured $\Sigma(E, \theta)$; deduced model parameters. ¹³C levels deduced B(λ). Coupled-channels analysis.
- 2001He22: ¹³C(α, α') E=2.6-6.2 MeV; measured $\sigma(\theta)$.
- 2002Ar16: ¹³C(α, α'), (α, α') E=25.5-35.15 MeV; measured elastic and inelastic $\sigma(\theta)$, excitation functions. Comparison with model predictions.
- 2006SaZP,2007SaZS: ¹³C(α,α') E=400 MeV; measured E_{α}, I_{α}; deduced $\sigma(\theta)$, B(E0), B(E2), level properties: J, π .
- 2008He11: ¹³C(α, α') E=2.6-6.2 MeV; measured radii, σ , $\sigma(\theta)$, S-factor.
- 2008Ka44: ¹³C(α, α') E=388 MeV; measured E_{α}, I_{α}; deduced $\sigma(\theta)$, B(E0). Comparison with DWBA calculations.
- 2010KaZO,2010KaZZ: ¹³C(α, α') E=388 MeV; measured E_{α}, I_{α}(θ); deduced d $\sigma(\theta)$ to individual states, B(E0).
- 2014DeZW: ¹³C(α, α') E=65 MeV; measured E_{α}, I_{α}(θ); deduced resonances, $\sigma(\theta)$ to discrete states, neutron halo radius to excited states using MDM (modified diffraction model).
- 2015Og04: ¹³C(α, α') E=65,90 MeV; measured reaction products; deduced $\sigma(\theta)$, rms radii. Comparison with available data.
- 2016Bu24: ¹³C(α, α') E=26.6-65 MeV; measured reaction products, E_{α}, I_{α}; deduced $\sigma(\theta)$, optical model and semi-microscopic parameters.
- 2016DeZX: ¹³C(α, α),(α, α') E=65,90 MeV [inelastic scattering to 3.09 MeV state in ¹³C]; measured E_{α}, I_{α}(θ); deduced $\sigma(\theta)$; calculated $\sigma(\theta)$ using optical model; calculated 1/2⁺ 3.09 MeV state neutron halo radius using MDM (Modified Diffraction Model), NRM (Nuclear Rainbow Method) and ANC (Asymptotic Normalization Coefficients). Compared with published radii of $J^{\pi}=1/2^{-}$ 8.86 MeV state (diluted cluster) and of $J^{\pi}=3/2^{-}$ 9.90 MeV state (compact cluster).
- 2018Bu05: ${}^{13}C(\alpha,\alpha),(\alpha,\alpha') E=29$ MeV; measured reaction products, E_{α} , I_{α} ; deduced $\sigma(\theta)$, diffraction and rms radii, J, π . The radii of the excited states ${}^{13}C^*(3.09, 8.86 \text{ MeV})$ are determined using Modified Diffraction Model (MDM) and are larger than that of the ${}^{13}C_{g.s.}$, confirming the suggestion that the 8.86 MeV (1/2⁻) state could be an analog of the Hoyle state in ${}^{12}C$ and the 3.09 MeV (1/2⁺) state has a neutron halo. ${}^{13}C^*(9.9 \text{ MeV})$ state is a possible "exotic" excited state. Comparison with theoretical calculations. See discussion on a ${}^{13}C$ analog of the Hoyle state in (2010Og03, 2010OgZZ, 2020Ch06, 2021Sh42).
- 2020InZZ: ¹³C(α, α') E=388 MeV; measured E_{α}, $\sigma(\theta)$, deduced L, J, π .
- 2021De32: ¹³C(α, α') E=65 and 90 MeV; measured angular distributions for θ =5° to 72° and 6°-40°, respectively. Searched for evidence of a Hoyle state analog in ¹³C. Analyzed data for ¹³C^{*}(9.9, 11.080) and deduced radii.
- 2021In04: ¹³C(α, α') E=388 MeV; measured E_{α}, $\sigma(\theta)$ for $\theta \approx 0^{\circ}$ to 20.2° at the RCNP/Osaka using the Grand Raiden spectrometer. Populated states up to E_x=16 MeV, DWBA analysis focused mainly on E_x=10.5-13 MeV in a search for α

condensate states. Deduced isoscalar transition strengths. In addition to known states, a state at $E_x=12.06$ MeV has isoscalar monopole and dipole character, while other states at $E_x=12.3$, 12.5, 12.6 and 12.8 MeV have isoscalar monopole character. Notably, no evidence of the 12.14 MeV state was observed. $\Delta L=1$ states are reported at $E_x=14.5$ and 16.1 MeV; authors suggest the 16.1 MeV state is a candidate for the α condensate state. Find related discussion in (2008To18).

2022Go16: ¹³C(α, α') E=65, 90 MeV; measured E_{α}, $\sigma(\theta)$ for for $\theta_{c.m.} \approx 8^{\circ}$ to 65° and for states up to E_x ≈11.8 MeV at the University of Jyvaskyla. Semi-Microscopic Dispersive Optical Model analysis. Mainly discussed scattering to ¹³C^{*}(0, 3.09, 3.68,

7.55, 8.86, 9.9, 10.996, 11.08 MeV). Deduced deformation lengths and reduced transition strengths.

Theory:

1971Te10: ¹³C(α, α') E=20,25 MeV; analyzed interference between states of transferred nucleus.

1974Ch58: ¹³C(α, α') E=26.6 MeV; analyzed $\sigma(\theta)$. The calculated and experimental angular distributions for (α, α') transitions to the ¹³C_{g.s.} state are discussed.

1977Sa19: ¹³C(α, α') E=40.5 MeV; calculated $\sigma(\theta)$ at forward angles.

1978Ze03: ¹³C(α, α') E=26.6 MeV; calculated $\sigma(\theta)$.

1983Go27: ¹³C(α, α') E=26.6; calculated $\sigma(\theta)$; deduced spin-orbit potential effects.

1988Le05: ¹³C(α, α')' calculated resonances, Γ , α -particle strength distribution. Optical model.

1990Mu19: ¹³C(α, α') E=65 MeV; analyzed $\sigma(\theta)$; deduced model parameters. Microscopic overlap integrals, vertex form factors.

1992AtZU: ¹³C(α, α') E \approx 50-105 MeV; analyzed data. ¹³C levels deduced B(λ) ratios. Harmonic-vibrational, other models.

2010DaZY: ¹³C(α, α), (α, α') E=388 MeV; calculated $\sigma(\theta)$; deduced radii for specified excited states.

2011De17: ¹³C(α, α') E=35.5 MeV; calculated $\sigma(\theta)$. ¹³C deduced rms radii.

2011Og09: ¹³C(α, α'), E(cm)<300 MeV; analyzed $\sigma(\theta)$ and diffraction radii data; deduced abnormally large radii for excited states.

2011Og10: ¹³C(α, α),(α, α') E_{c.m.}=388 MeV; analyzed $\sigma(\theta)$; deduced rms radii, diffraction radii, neutron halos in the excited states. Modified diffraction model.

2017HaZY: ${}^{13}C(\alpha, \alpha')$ E=2-5.7 MeV; calculated $\sigma(\theta)$. Calculations using R-matrix; results compared with available data.

¹³C Levels

 $R_{\mbox{rms}}$ radius determined by MDM (Modified Diffraction Method) except where noted.

E(level) ^{†‡}	$J^{\pi \#}$	L#	deformation $\beta^{\#}$	Comments			
0	1/2-	0		R_{rms} =2.33 fm 3 (2018Bu05: E_{α} =29 MeV); see also 2.31 fm (2011DeZX 2014DeZW) and 2.33 fm (2015Oe04: E_{α} =65.90 MeV)			
3090	$1/2^{+}$	1	0.19	$B(E1)^{+}=0.0965$ (2021In04)			
	·			$R_{rms}(fm)$ =3.04 22 (2011DeZY), 2.92 7 (2014DeZW), 2.98 9 (2016DeZX: E _α =65 MeV), 2.88 19 and ≥2.6 (NRM: Nuclear Rainbow Method) (2016DeZX: E _α =90 MeV), 2.7 4 (2018Bu05).			
3680	$3/2^{-}$	2	0.17	B(E2)↑=0.00560 20 (2021In04)			
				B(E2) $\downarrow \approx 6 \text{ e}^2 \text{fm}^4$ (1966Ha19); DWBA fit is rather poor.			
				deformation β : See also β =0.54 (WS: Woods-Saxon form), 0.51 (DF: double folding calculation) at E_{α} =29 MeV and β =0.44 (WS), 0.4 (DF) at E_{α} =50 MeV (2016Bu24).			
				B(E2)↑≈13.7 e^{2} fm ⁴ , δ_{2} =1.05 fm (2022Go16).			
3850	$5/2^{+}$	3	0.31	B(E3)↑=0.000472 26 (2021In04)			
				B(E3)↑≈220 e^{2} fm ⁶ , δ_{3} =0.82 fm (2022Go16).			
6860	5/2+	3	0.042	$\Gamma_{\gamma}/\Gamma \le 3 \times 10^{-4}$ (1984DeZR,1985De11). $\Gamma_{\gamma} \le 1.5$ eV using $\Gamma = 5.2$ keV from (1982Kn02: ¹² C(n,x)).			
				(1985De11) indicates that the most probable channel for the decay of this state is the E1 transition to the 3.69 MeV, $3/2^-$ level.			
74000				$E_{\alpha}^{(1)} = 10^{-10} \text{ fm}^{-10} \text{ fm}$			
/490~				E(level): Unresolved in (1966Ha19,19/4Fe08,1981Pe08,1984DeZR,1985De11). L: (1981Pe08) fits the unresolved ${}^{13}C^*(7490+7550)$ angular distributions with $\Delta L=2$ ($J^{\pi}=3/2^-,5/2^-$). The fit is rather poor. The Adopted Levels gives $J^{\pi}=(7/2^+)$ and $5/2^-$, respectively, which implies $\Delta L=3$ and 2, respectively.			

Continued on next page (footnotes at end of table)

¹³C(α,α),(α,α'),($\alpha,\alpha'\gamma$) (continued)

¹³C Levels (continued)

E(level) ^{†‡}	J ^{π#}	Г	L#	deformation $\beta^{\#}$	Comments
7550 [@]			(2)		B(E2)↑=0.00663 24 (2021In04) E(level): Unresolved in (1966Ha19,1974Fe08,1981Pe08,1984DeZR,1985De11).
					B(E2; IS(isoscalar transition))=77 fm ⁴ 8 (2007SaZS); B(E2) $\downarrow \approx 6 e^{2} fm^{4}$ (1966Ha19); DWBA fit is rather poor.
					deformation β : See also β =0.54 (WS), 0.51 (DF) at E_{α} =29 MeV and β =0.44 (WS), 0.4 (DF) at E_{α} =50 (2016Bu24).
					B(E2)↑≈20.5 e^{2} fm ⁴ , δ_{2} =1.02 fm (2022Go16).
7686 [@] 6	3/2+	70 keV 5	1	0.097	T=1/2 (1980Fu04). E(level) Γ : From (1980Eu04)
8860	1/2-		0	0.10	$B(E0)\uparrow=29.6~23~(2021In04).$
0000	1/2		0	0.10	$B(E0 IS) = 55 \text{ fm}^4 6 (2007 \text{ sa7S})$; see also preliminary
					results B(E0,IS)=37 fm ⁴ 6 (2008Ka04) and 42 fm ⁴ 6 (2018Ka72)
					(2010 KaZO, 2010 KaZZ). P (fm)-2.63.12 (2011 DeZV) 2.68.10 (2014 DeZW)
					$R_{rms}(III) = 2.05 T2 (2011De2 1), 2.06 T0 (2014De2 W),$ $\geq 2,5 (NRM, R_{\alpha} = 65, 90 \text{ MeV}) \text{ and } 2.63 T6 (E_{\alpha} = 90 \text{ MeV}) (2016De7X), 2.50 32 (exotic state)$
					(2018Bu05).
					B(E0)↑≈0.65 e ² , δ_0 =0.14 fm (2022Go16).
9500	9/2+		5	0.16	Intense neutron decay to the 1st excited state of ^{12}C
	- 1				with probability 20% 10 assuming the angular distribution of the neutrons is isotropic
9900	3/2-				J^{π} : From (2015Og04), suggested rotational band member.
					$R_{rms}(fm)=2.00 \ 14 \ (2014DeZW), \ 2.02 \ 14 \ (E_{\alpha}=65 \ MeV)$ and 1.76 23 (E _{\alpha} =90 MeV) both from (2015Og04).
					E(level): Exotic state ($2018Bu05$).
					$B(E2)\uparrow\approx 0.22 e^{2} fm^{4}$, $\delta_{2}=0.22 fm$ (2022Go16).
10460 10753	$(7/2^{-})$				$B(F4)^{+}=0.0000037.14 (2021In04)$
10755	(1/2)				$E(level), J^{\pi}$: Unresolved doublet (1981Pe08,2021In04).
10820	$(5/2^{-})$		2	0.18	$B(E2)\uparrow=0.00017 \ 1 \ (2021In04)$
					E(level), J^{π} : Unresolved doublet (1981Pe08, 2021In04).
11010					B(E1)↑<0.023 (2021In04)
			-		E(level): From (2014DeZW).
11080	$(1/2^{-})$		0	0.15	$B(E0)\uparrow=19.2 \ 3 \ (2021\ln 04).$
					J^{n} : (1981Pe08) report a $\Delta L=2$ $J^{n}=(3/2^{-},5/2^{-})$ angular
					distribution, but we take $\Delta L=0$ J [*] =(1/2), which is reported in (2007So7S, 2008Ko44, 2010Ko7O)
					$2010 \text{K}_{a} \text{ZZ}$ 2020 $\ln \text{ZZ}$
					$B(F0 IS) = 35 \text{ fm}^4 4 (2007Sa7S);$ see also preliminary
					(20070425), see also preliminary results 18 fm ⁴ 3 (2008Ka44) and 23 fm ⁴ 3
					$(2010 \text{K}_{a}\text{Z}\Omega, 2010 \text{K}_{a}\text{Z}Z)$
11748					$B(E2)\uparrow=0.00056 \ 16 \ (2021In04)$
11850	$(7/2^+)$		3	0.35	$B(E3)\uparrow=0.00074 \ 8 \ (2021In04)$
					J ^{π} : (1981Pe08) report a $\Delta L=2$ J ^{π} =(3/2 ⁻) angular distribution, but we take $\Delta L=3$ J ^{π} =(7/2 ⁺), which is reported in (2020Lr ² /2, 2021Lr04)
12055 8 1	$1/2 = P_{-}(2/2) = F(2) =$	20 1 17 4	0.2		$P(E_2) = 0.00022 L(2021L-0.4)$
12055~ 1	$1/2 \approx (3/2, 5/2)$	58 KeV 4	0+2		$B(E2) = 0.00022 \ I \ (20211004)$ E(level): Unresolved doublet
					B(E0) = 1.7 3 (2021In04).

13 C(α , α),(α , α'),(α , $\alpha'\gamma$) (continued)

¹³C Levels (continued)

E(level) ^{†‡}	$J^{\pi \#}$	Г	L#	deformation $\beta^{\#}$	Comments
12282 ^{&} 5	1/2-	122 keV 22	0		B(E0)↑=4.1 4 (2021In04). E(level),Γ,L: From (2021In04).
12450 ^{&} 3	1/2-	<70 keV	0		B(E0)↑=4.9 4 (2021In04). E(level), Γ ,L: From (2021In04). E(level): See also the broad ≈12.5 MeV state reported in (2008Ka44,2010KaZO,2010KaZZ), which is presently associated with E _x =12.3, 12.5, 12.6 and 12.8.
12601 ^{&} 3	1/2-	<70 keV	0		B(E0) ⁺ =3.1 2 (2021In04). E(level),Γ,L: From (2021In04).
12775 ^{&} 4	1/2-	<70 keV	0		B(E0)↑=0.92 5 (2021In04). E(level),Γ,L: From (2021In04).
14.5×10 ³ <i>&</i> 1	1/2+,3/2+		1		B(E1) \uparrow =6.9 7 (2021In04) E(level),J ^{π} ,L: From (2021In04).
15110	3/2-		2		T=3/2 (1981Pe08)
16080	7/2+		3	< 0.1	
16.1×10 ³ & 1	(1/2 ⁺ ,3/2 ⁺)		1		B(E1) \uparrow =2.1 8 (2021In04) E(level),J ^{π} ,L: From (2021In04). E(level): Suggested as a possible candidate for α condensed state.

[†] Values listed in, for example, (1981Pe08) except where noted.

[‡] For levels reported, see (1959Fu62, 1966Ha19, 1967Ar17, 1974Fe08, 1980Fu04, 1981Pe08, 1983Pi07, 1984De44, 1984DeZR, 1985De11, 2002Ar16, 2006SaZP, 2007SaZS, 2008Ka44, 2010KaZO, 2010KaZZ, 2011DeZY, 2014DeZW, 2015Og04, 2016Bu24, 2016DeZX, 2018Bu05).

[#] From DWBA analysis in (1981Pe08) except where noted.

[@] Unresolved in (1985De11) who determined $\Gamma_{\gamma}/\Gamma \leq 3 \times 10^{-4}$ (1984DeZR,1985De11) for the unresolved group. In their discussion, they considered various scenerios depending upon which of the levels ¹³C*(7.49,7.55,7.69) is populated.

[&] Uncertainties in the level energies are statistical only. These results, obtained using the Grand Raiden (1999Fu12), were collected with a peak FWHM of 170 keV; peak energy resolution should be dominated by the focal plane energy calibration and is estimated by a reasonable $\Delta E \approx 3$ keV.

$\gamma(^{13}C)$

Eγ	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
169	3850	5/2+	3680	3/2-

$\frac{{}^{13}{\rm C}(\alpha,\alpha),\!(\alpha,\alpha'),\!(\alpha,\alpha'\gamma)}$

Level Scheme

