$^{12}C(p,\pi^+)$

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024

Most relevant:

- 1973Da24: ¹²C(p, π^+) E=185 MeV; measured $\sigma(E(\pi^+),\theta)$; deduced levels.
- 1980So05: ¹²C(p,π^+) E=200 MeV; measured $\sigma(E(\pi^+))$; deduced reaction mechanism.
- 1984Lo13: ¹²C(pol. p, π^+) E=200-250 MeV; measured $\sigma(\theta)$, analyzing power vs θ ; deduced isobar excitation role. Microscopic two-nucleon models.
- 1985Bi04: ¹²C(p, π^+) E=201,180 MeV; measured $\sigma(\theta, E(\pi))$; deduced $\sigma(E)$.
- 1987Ko01: ¹²C(pol. p, π^+) E=200 MeV; measured $\sigma(E(\pi))$, analyzing power vs θ ; deduced quasifree two nucleon collisions role. Magnetic spectrometer.
- Others:
- 1970Do04: ¹²C(p, π^+) E=600 MeV; measured $\sigma(E_{\pi})$.
- 1971Da10: ¹²C(p, π^+) E=185 MeV; measured $\sigma(E(\pi^+),\theta)$.
- **1977BeZY**: ¹²C(p, π^+) E=148-160 MeV; measured σ .
- **1978Au07**: ¹²C(pol. p, π^+) E=200 MeV; measured $\sigma(\theta)$.
- 1979Ma38: ¹²C(p,π^+) E=0.5-10 MeV above threshold; measured σ .
- 1979Ma39: ¹²C(p,π^+) E=8-16 MeV above threshold; measured inclusive σ ; deduced A-dependence.
- 1980Ho20: ¹²C(p, π^+) E=300 MeV; measured $\sigma(\theta)$; deduced structure, reaction process interplay.
- 1980So05: ¹²C(p, π^+) E=200 MeV; measured $\sigma(E(\pi^+))$; deduced reaction mechanism.
- 1981MaZT: ¹²C(pol. p, π^+) E=200 MeV; measured $\sigma(\theta)$, analyzing power vs θ . ¹²C(pol. p, π^+) E=330-425 MeV; measured σ (inclusive). Semiclassical model analysis.
- 1981Sj02: ¹²C(pol. p,π^+) E=147-159 MeV; measured $\sigma(\theta)$, analyzing power vs θ .
- 1981So04: ¹²C(p, π^+) E=156-200 MeV; measured $\sigma(\theta)$; deduced single-particle, two particle-one hole final state effects.
- 1982Lo03: ¹²C(pol. p, π^+) E=200-250 MeV; measured $\sigma(\theta)$, analyzing power vs θ ; deduced analyzing power energy, structure dependences.
- 1984GrZW: ¹²C(pol. p, π^+) E=170,183,190 MeV; measured $\sigma(\theta)$, analyzing power vs θ ; deduced P-, S-wave amplitude energy dependence, barrier penetration factor consistency effects.
- 1986Fa03: ¹²C(pol. p, π^+) E=400,450 MeV; measured $\sigma(\theta, E(\pi^+))$, analyzing power vs θ , $E(\pi^+)$. Quasi-free model.
- 1987Ho21: ¹²C(p, π^+) E=166,186 MeV; measured $\sigma(\theta)$. Recoil detection method.
- 1987Hu08: ¹²C(p, π^+) E=250,354,489 MeV; measured $\sigma(\theta, E)$; deduced reaction mechanism.
- 1988Ab05: ¹²C(p, π^+) E=1 GeV; measured $\sigma(\theta)$ vs pion momentum; deduced reaction mechanism.
- 1989Ko21: ¹²C(pol. p, π^+) E=200 MeV; measured $\sigma(\theta)$ analyzing power vs θ deduced reaction mechanism. ¹³C deduced levels, J, π . Shell model calculations.
- 1996Ja25: ¹²C(p, π^+) E=166,294 MeV; measured $\sigma(\theta)$. High momentum transfer, recoil detection at a cooler ring.

Theory:

- **1971Re12**: ${}^{12}C(p,\pi^+)$ E=600 MeV; calculated σ .
- 1972Am05: ¹²C(p, π^+) E=600 MeV; analyzed σ . Single-particle model.
- 1973Di08: ¹²C(p, π^+) E=185 MeV; calculated $\sigma(E_{\pi^+}, \theta)$.
- 1973Ei01,1973Ei05: ¹²C(p, π^+) E=600 MeV; calculated σ .
- 1973Ke02: ¹²C(p, π^+) E=185 MeV; calculated σ .
- 1973Ro10: ¹²C(p, π^+) E=68,185 MeV; calculated $\sigma(\theta)$. DWBA.
- 1974Ho13: ¹²C(p,π^+) E=185 MeV; calculated $\sigma(E(\pi^+),\theta)$.
- 1974Mi06,1974Mi11: ¹²C(p, π^+) E=185 MeV; calculated $\sigma(\theta, E(\pi^+))$.
- 1975No05: ¹²C(pol. p,π^+), calculated polarization.
- 1976Le02: ¹²C(p,π^+) E=185 MeV; calculated σ . DWBA calculations.
- 1976Mi14: ¹²C(p, π^+); calculated $\sigma(\theta)$.
- 1977Gi06: ¹²C(p, π^+) E=185 MeV; calculated $\sigma(\theta)$.
- 1977Ku21: ¹²C(p,π^+) E=185 MeV; calculated σ .
- **1978Mi02**: ${}^{12}C(p,\pi^+)$ E=185 MeV; calculated $\sigma(\theta)$.
- 1978Yo02: ¹²C(pol. p,π^+) E=200 MeV; calculated asymmetry.

¹²C(\mathbf{p},π^+) (continued)

1981Bu18: ¹²C(p,π^+) E=730 MeV; calculated $\sigma(\theta)$, inclusive spectra. Isobar model, intranuclear cascade.

1982Co07: ¹²C(pol. p, π^+) E=159,200 MeV; caculated $\sigma(\theta)$, A(θ). DWBA, Dirac equation, different pion-nucleon vertices.

1984Gu27: ¹²C(p, π^+) E=threshold-325 MeV; calculated pion production σ (E). Knockout model.

1984Ke02: ¹²C(pol. p, π^+) E=200 MeV; calculated $\sigma(\theta)$, analyzing power vs θ . Isobar-doorway model.

1985Iq01: ¹²C(p, π^+) E=250,265,200 MeV; calculated $\sigma(\theta)$. Two-nucleon model, intermediate isobar effects.

1987Ku06, 1987KuZW: ¹²C(p, π^+) E \approx 200 MeV; calculated $\sigma(\theta)$ vs momentum transfer; deduced structure effects. Shell model. 1994Fa10: ¹²C(pol. p, π^+) E=200 MeV; analyzed $\sigma(\theta)$, analyzing power data.

¹³C Levels

E(level)	Jπ‡	Comments
0 [†]	$1/2^{-}$	
3089†	$1/2^{+}$	
3685	3/2-	E(level): Unresolved from nearby states.
3854	$5/2^{+}$	E(level): Unresolved from nearby states.
6860	5/2+	
7490	$(7/2^+)$	E(level): Unresolved from nearby states.
7550	5/2-	E(level): Unresolved from nearby states.
7686?	$3/2^{+}$	E(level): Unresolved from nearby states.
8400	$3/2^{+}$	
9.50×10^{3}	9/2+	
11.9×10^{3}		E(level): Reported in (1987Ko01,1987Hu08,1989Ko21).
14×10^{3}		E(level): Reported in (1985Bi04,1987Ko01,1987Hu08,1989Ko21).
21470		E(level): Reported in (1985Bi04,1987Ko01,1987Hu08,1989Ko21).
		J^{-} , 1: (198/K001,1989K021) suggested $J^{-} = (1/2^{+}, 9/2^{+})$ with a preference for $1/2^{+}$; they discussed a potential 1/2, 3/2 isospin mixing for this level. On the other hand, (1994Fa10) suggests this is a 13/2 ⁻ level with a $(1d_{5/2})^2 (1p_{3/2})^{-1}$ configuration.

[†] Values listed in (1980So05). See also (1971Da10, 1980So05, 1981Sj02, 1987Ko01, 1989Ko21) for discussion on unresolved states.

[‡] From, for example, A_y measurements in (1989Ko21). See (1970Do04, 1971Da10, 1973Da24, 1978Au07, 1980Ho20, 1980So05, 1981Sj02, 1981So04, 1982Lo03, 1984Lo13, 1987Hu08, 1987Ko01, 1989Ko21, 1996Ja25) for angular distributions, differential cross sections, A_v measurements and for discussion on single and multi-step reaction processes.