$^{12}C(^{13}C,^{13}C),(^{13}C,X)$ 2016Ka37

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024

1977Gu07: ${}^{12}C({}^{13}C,{}^{13}C)$ E=12 MeV; measured $\sigma(\theta)$ for θ =39° to 136° at Heidelberg Tandem accelerator. DWBA analysis. Deduced a model-independent value of C²=2.55 *10* for the asymptotic normalization of the 1p_{1/2} neutron wave function. Using this, and a bound-state wave function obtained from analysis of electron elastic scattering, the absolute spectroscopic factor S=0.81 4 was deduced.

1985Bo39: ¹²C(¹³C, ¹³C),(¹³C, ¹³C') E=240 MeV; measured $\sigma(\theta)$ for $\theta_{c.m.} \leq 60^{\circ}$ using the VICKSI spectrometer in Berlin;

analyzed refractive scattering and nuclear rainbow effects for ${}^{13}C^*(0, 3.85 \text{ MeV})$.

1986Ba80: ${}^{12}C({}^{13}C, {}^{13}C), ({}^{13}C, {}^{13}C') \to \infty$ MeV; measured $\sigma(\theta)$ for $\theta=20^{\circ}$ to 160°. Deduced reaction mechanism.

1991Fu10: C(13 C,X) E \approx 33 MeV/nucleon; measured total reaction cross section.

2000Fa12, 2000Fa17: C(13 C,X) E \approx 33.4 MeV/nucleon; measured total reaction cross section.

2001Oz03: C(¹³C, ¹³C) E≈960 MeV; measured interaction cross section. Deduced matter radius of 2.28 fm 4. See also (2001Oz04).

2010A110: ¹³C(¹²C, ¹³C) E=10.6 MeV/nucleon; σ and $\sigma(\theta)$ for $\theta_{c.m.} \le 60^{\circ}$ using the Texas A&M MDM spectrometer; deduced optical model parameters and asymptotic normalization coefficients (ANC) $C_{p1/2}^2 = 2.24 \text{ fm}^{-1} II$. They average their value with

those from other reactions to obtain $C_{p1/2}^2 = 2.31 \text{ fm}^{-1} 8$; with this value they analyze stellar reaction rates.

2016Ka37: XUNDL dataset compiled by TUNL, 2017.

- The authors carried out a systematic study of the charge changing cross sections of ≈ 900 MeV/nucleon carbon isotopes on a carbon target and analyzed the data to obtain the proton and matter radii of $^{12-19}$ C.
- A beam of 828 MeV/nucleon ¹³C ions was produced by fragmenting either a 1 GeV/nucleon ²⁰Ne beam or 1 GeV/nucleon ⁴⁰Ar beam on a thick beryllium target at the GSI/FRS facility. After magnetic separation, the ¹³C beam particles were identified event-by-event using a multi-sampling ionization chamber and the time-of-flight between two scintillators. The beam then passed through a thick carbon target before being reanalyzed in a second multi-sampling ionization chamber that measured the Z of ions after the target. In the analysis, the ratio of the charge changing events to the non-charge changing events was determined and used to obtain σ_{α} , the charge changing cross section. For ¹³C, σ_{α} =726 mb 7 was determined.
- The data were then compared with a finite-range Glauber model to obtain root-mean-square radii for the proton distribution and for the matter distribution. The results from the systematic study across ^{12–19}C is then compared with various models and comments are given on the development of neutron skins and neutron halos.

Theory:

1973Vo04: ¹²C(¹³C,¹³C); calculated $\sigma(\theta)$, particle, hole transfer.

1975De09: ¹³C(¹²C, ¹²C), ¹³C(¹²C, ¹²C), ¹³C(¹⁴C, ¹⁴C) E=7.8-12.6 MeV; analyzed data and deduced optical model parameters. 1984Vo11: ¹²C(¹³C, ¹³C) E_{c.m.}=5-20 MeV; calculated $\sigma(\theta)$ vs E. ¹²C(¹³C, ¹³C') E_{c.m.}=7.8,9.88 MeV; calculated $\sigma(\theta)$, P(θ), σ . Coupled reaction channels model, valence nucleon molecular orbiting.

2019Ay05: ${}^{12}C({}^{13}C, {}^{13}C)$ E<300 MeV; analyzed available σ data; deduced the real part of the optical potential using the double folding model.

2021Do04: ¹²C(¹³C,¹³C) E=7.8, 14.2 MeV; used CDCC model to calclate exchange effects in scattering reactions.

2023Ma02: ¹²C(¹³C,¹³C); analyzed mass asymmetry and charge asymmetry effects in elastic scattering of light nuclei.

2022Ay05: ^{12,14}C(¹³C,¹³C); optical model analysis of elastic scattering of carbon isotopes, analyzed results from different NN interactions.

¹³C Levels

E(level)	J^{π}	S	Comments
0	1/2-	0.81 4	S: From (1977Gu07).
			$R_{r.m.s.}^{protons}$ = 2.30 fm 4, $R_{r.m.s.}^{matter}$ = 2.28 fm 4 (2016Ka37).
			ANC is $C_{p1/2}^2 = 2.24 \text{ fm}^{-1} 11$ (2010Al10).
3.85×10^{3}	5/2-		E(level): See discussion in (1985Bo39).