12 C(11 B, 10 B),(12 C, 11 C)

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024	

Also includes ¹²C(¹⁴N,¹³N), ¹²C(¹⁷O,¹⁶O), ¹²C(¹⁸O,¹⁷O) reactions.

1967Bi06: ${}^{12}C({}^{14}N, {}^{13}N)$ E=148 MeV; measured ${}^{13}N$ energy spectrum at θ =18° to 28° at the Yale linear accelerator. Observed states at ${}^{13}C^*(0,3.89,7.6,9.5 \text{ MeV})$; discussed configurations.

1967Po13: ¹²C(¹¹B,¹⁰B) E=115.9 MeV; measured ¹⁰B energy spectrum at θ_{lab} =8.5° at the Yale linear accelerator. Populated states at ¹³C*(0,3.85,5.8 MeV).

1974An36: ¹²C(¹¹B,¹⁰B),(¹²C,¹¹C) E=114 MeV from the AERE Harwell cyclotron; measured particle spectra, $\sigma(E,\theta)$ for $\theta \approx 10^{\circ}$ to 60°. Deduced levels, J, π , spectroscopic amplitudes.

1978Ch16: ${}^{12}C({}^{17}O, {}^{16}O), ({}^{18}O, {}^{17}O) \to E_{c.m.} = 12.6-14.0 \text{ MeV}$ from the Weizmann Institute Tandem; measured $\sigma(\theta)$ for $\theta \approx 40^{\circ}$ to 140°; deduced reaction mechanisms, S. ${}^{12}C$ natural targets.

1979Fu04: ${}^{12}C({}^{12}C,{}^{11}C)$ E=93.9 MeV; measured $\sigma(\theta)$. DWBA analysis.

1989HeZU: ¹²C(¹²C, ¹¹C) E=344.5 MeV; measured $\sigma(\theta)$; deduced model parameters, spectroscopic factor. DWBA analysis.

1992Ja10: ¹²C(¹²C,¹¹C) E=344.5 MeV from the JULIC cyclotron; measured particle spectra, $\sigma(\theta)$ for $\theta \approx 10^{\circ}$ to 35°. Deduced

single particle transfer spectroscopic factors, products of spectroscopic factor, C²S₁ C²S₂. DWBA analyses.

2013Ca25: XUNDL dataset compiled by TUNL, 2014.

The authors measured angular distributions for the one-neutron transfer reaction ¹²C(¹⁸O,¹⁷O)¹³C. Data were analyzed via exact finite range Coupled Reaction Channel Calculations (CRCC) based on a parameter free double folding potential. This reaction study is part of a greater work, which included measurements on ¹³C(¹⁸O,¹⁷O)¹⁴C and ¹²C(¹⁸O,¹⁶O)¹⁴C. As a result, a detailed analysis of the two-neutron transfer reaction was carried out.

Beams of $E(^{18}O)=84$ MeV ions, from the INFN Catania impinged on 50 μ g/cm² targets of either $^{12}C(\text{pure})$ or $^{13}C(99\%$ enrichment). Reaction products were analyzed using the MAGNEX spectrometer with $\theta_{\text{lab}}=8^\circ$, 12° and 18°. Angular distributions were analyzed. In the one-neutron transfer reaction a complex relation of levels in the carbon and oxygen residuals is excited which makes interpretation non-trivial.

¹³C Levels

E(level)	$J^{\pi \dagger}$	L [‡]	s†	Comments
0	$1/2^{-}$	1	0.78 10	$E(\text{level}), J^{\pi}$: (1974An36,1992Ja10,2013Ca25); see also (1967Bi06,1967Po13).
				S: From (1978Ch16: ${}^{13}C_{g.s.} = {}^{12}C_{g.s.} \times 1p_{1/2}$); see also 0.66 (1974An36), 0.52 (1992Ja10).
3090 10	$1/2^{+}$	0	0.90 17	E(level), J^{π} : (2013Ca25); see also (1974An36).
				S: From (1978Ch16: ${}^{13}C^*(3.09) = {}^{12}C_{g.s.} \times 2s_{1/2}$); see also 1.17 (1974An36).
3680	$3/2^{-}$	1	0.21	E(level), J^{π} , S: (1974An36).
3850 10	$5/2^{+}$	2	0.48	E(level), J^{π} : (2013Ca25); see also (1967Bi06, 1967Po13, 1974An36, 1992Ja10).
				S: From (1992Ja10); see also 1.07 (1974An36).
6860 10	$5/2^{+}$			$E(\text{level}), J^{\pi}: (2013Ca25).$
7490	$7/2^{+}$		0.052	$E(\text{level}), J^{\pi}, S: (1992Ja10).$
7550	$5/2^{-}$		0.108	$E(\text{level}), J^{\pi}, S: (1992Ja10).$
7690 10	$3/2^{+}$	2	0.09	E(level), J^{π} : (2013Ca25); see also (1967Bi06: weak peak, 1974An36: $E_x = 7680$ keV).
				S: From (1974An36).
8250	$3/2^{+}$	2	0.67	E(level), J^{π} , S: (1974An36).
9500 10	$9/2^{+}$		0.047	E(level), J^{π} : (2013Ca25); see also (1992Ja10) and (1967Bi06: $J^{\pi}=7/2^{-}$).
				S: From (1992Ja10).

[†] From DWBA analyses of spectroscopic factors in (1974An36,1992Ja10,2013Ca25).

[‡] From (1974An36).