10 **B**(α ,**p**),(α ,**p** γ)

	History				
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024		

1953Sh64: ¹⁰B(α ,p) E=1-2 MeV; resonances for production of γ -rays and protons from the reaction were observed. Spins and parities of $3/2^-$ and $5/2^+$ were confirmed for the second and third excited levels of ¹³C.

1954St20: ¹⁰B(α ,p γ); the angular distributions of the high energy γ -rays (a mixture of 3.7 and 3.9 MeV γ -rays) and of the low energy γ -rays (0.2 MeV) from the reaction, and the angular correlations of the high energy γ -rays with the emitted protons have been measured at five α -particle resonances E_{α} = 1.13, 1.51, 1.64, 1.68 and 1.83 MeV.

1956Ma52: A scintillation spectrometer and a magnetic lens spectrometer have been used to study gamma rays from excited states of ¹³C at 3.84 and 3.68 Mev, produced in the reactions ¹²C(d,p) and ¹⁰B(α ,p). Lines have been measured at 169.5 keV 4, 3.844 Mev 15, and 3.69 MeV 2.

1960Ka13: ${}^{10}B(\alpha,p)$; estimated the strength of the corresponding but non-mirror MI transition from the ${}^{13}C^*(3.68 \text{ MeV:}3/2^-)$ state to the $1/2^-$ ground state and compared it with the same IPM calculation as accounts for the transition in ${}^{13}N$.

1960Pi09: ${}^{10}B(\alpha,p)$ E=1.64 MeV; measured branching ratios of the ${}^{13}C^*(3854)$ level.

1961Ya02: ${}^{10}B(\alpha,p)$ E=27.5,33.1 MeV; measured angular distributions of ground state protons.

1962Ed01: ${}^{10}B(\alpha,p)$, proton groups have been observed to the first four states of ${}^{13}C$.

1967Od01: The ground-state Q values of the reaction ${}^{10}B(\alpha,p)$ was measured.

1968Ri16: ¹⁰B(α ,p) E=2.9 MeV; measured Doppler-shift attenuation. ¹³C, ¹³N levels, deduced T_{1/2}.

1969Ga01: 10 B(α ,p γ) E=1.0-3.5 MeV; measured σ (E;E $_{\gamma}$).

1969He22: ¹⁰B(α ,p) E=4.5 MeV; measured $\sigma(E_{\gamma}, E(^{13}C))$. ¹³C*(3.85) level deduced τ =10.7 ps 10. Recoil distance method.

1969Li07: ¹⁰B(α ,p γ) E=5.15 MeV; measured E_{γ}, I_{γ}. ¹³C levels deduced γ -branching. Ge(Li) detector.

1970Ga01: ¹⁰B(α ,p γ) E=1.96 MeV; measured E_{γ}($\theta(\gamma)$ =0°), Doppler shift, recoil distance. For ¹³C*(3.85) they deduced τ =9.9 ps 9.

1971HiZF: Studies of this reaction led to $J^{\pi}=3/2^{-}$ and $5/2^{+}$ for ${}^{13}C^{*}(3.68,3.85)$ states respectively.

1974WiZL: ¹⁰B(α ,p) E=2.1-10.75 MeV; measured σ (Ep).

1975Wi04: ¹⁰B(α ,p) E=2-10 MeV; measured σ (E,Ep, θ). Proton groups have been observed to the first four states of ¹³C.

1980Wa24: ¹⁰B(α ,p) E=1.66 MeV; measured E_{γ}, I_{γ}, $\gamma\gamma$ -coin, $\gamma(\theta)$. ¹³C level deduced T_{1/2}, levels, γ -branching, B(λ). Shell model.

1981Ki08: ¹⁰B(α ,p₁ γ) E=2.563-3.064 MeV; measured $\sigma(\theta_p)$. Legendre Polynomial analysis.

1983Cs03: ${}^{10}B(\alpha,p_1\gamma)$ E=2.56-3.06 MeV; measured $\sigma(E)$. See also (1983CsZY).

1983La17: ¹⁰B(α ,p γ) E=2.4 MeV; measured E_{γ}, I_{γ}, thick target γ yields.

1986Ba58: ¹⁰B(α ,p) E=2.3 MeV; measured σ (E_p), σ (E_{α}). ¹³C level deduced no neutral particle decay evidence,

 $\Gamma(\phi)/\Gamma_{\gamma} \leq 7 \times 10^{-5}$; upper limit of 10^{-6} . Fundamental symmetries.

1987MiZY: ¹⁰B(α ,p) E=48 MeV; measured σ (E_p). ¹³C deduced levels.

1988BrZY: ¹⁰B(α ,p) E=48 MeV; ¹³C deduced levels, J, π .

1990JaZZ: ${}^{10}B(\alpha,p)$ E=48 MeV; ${}^{13}C$ deduced level, possible T.

1991Br26: ${}^{10}B(\alpha,p)$ E=48 MeV at 25° and 35°; measured particle spectra. ${}^{13}C$ deduced levels, possible isospin. Also reported the analog reaction ${}^{10}B({}^{9}Be, {}^{6}Li)$ at E=40 MeV and θ =22.5° with low statistics. Compared with shell model predictions.

1995He40: ¹⁰B(α ,p) E=5.6-10 MeV; measured thick target γ yields; deduced γ production intensity distributions from materials related features.

1996Gi13: ¹⁰B(α ,p) E=4-5 MeV; measured σ (E_p, θ) for p₀₋₃ at θ _{lab}=135°.

1997He11: ${}^{10}B(\alpha,p)$ E=5.6-10 MeV; measured thick target residuals yields; deduced reaction mechanism related features.

1999Ki29: ¹⁰B(α ,p) E=1.2-4.0 MeV; measured Doppler broadened E_{γ}, I_{γ}(θ); deduced proton distributions; analyzed energy dependence of angular distribution parameters.

2003Ch44: ¹⁰B(α ,p) E=1.4-5.3 MeV; measured Ep, σ (E, θ). Application to boron depth profiling discussed.

2019Li42: ¹⁰B(α ,p) E=2.2-4.9 MeV; measured secondary E_{γ}, γ -ray yields, used for troubleshooting during the experiment. 2020Li08: ¹⁰B(α ,p γ) E=835-1665 keV; measured E_{γ} and I_{γ}.

2023Gu04: ¹⁰B(α ,p_{0,1,2,3}),(α ,p γ) E_{c.m.}=0.19-1.43 MeV; measured σ (E_p, θ) for θ =90° and 135° at Notre Dame. R-matrix analysis of excitation function.

Theory:

2018Zh51: ¹⁰B(α ,p) E<10 MeV; analyzed available data; deduced σ , reaction rates. Comparison with TALYS calculations.

10 **B**(α ,**p**),(α ,**p** γ) (continued)

¹³C Levels

E(level) [†]	J ^{π &}	$T_{1/2}$ or Γ	Comments
0	$1/2^{-}$		Q ₀ =4130 keV 20 (1953Sh64), 4063.4 keV 24 (1967Od01).
3089.443 [‡] 20	1/2+	<6.93 fs	T _{1/2} : From τ <10 fs (1968Ri16: Doppler shift method, ¹³ C(p,p') and ¹² C(d,p)). Total radiation width Γ_{γ} >0.066 eV (1968Ri16).
3684.482 [#] 23	3/2-	<18.02 fs	T _{1/2} : From τ<26 fs (1968Ri16: Doppler shift, ¹³ C(p,p') and ¹² C(d,p)); see also $τ$ <300 fs (1956Ma52: Doppler shift). Total radiation width Γ _γ >0.025 eV (1968Ri16). See also Γ _γ =0.40-0.75 eV (1960Ka13: 3.68→g.s. M1 transition).
3853.783 [@] 22	5/2+	7.02 ps +51-36	T _{1/2} : From τ =10.13 ps +73-52 which is the weighted value of τ =9.0 ps +25-15 (1968Ri16: Doppler shift), $\tau_{\rm m}$ =10.7 ps 10 (1969He22: recoil-distance method), $\tau_{\rm m}$ =9.9 ps 9 (1970Ga01: recoil-distance method). See also 10.8 ps 10 (1968Fo12; ref. within 1970Ga01).
1			Total radiation width $\Gamma_{\gamma} = 7.3 \times 10^{-5}$ eV 16 (1968Ri16).
6860 ^b			
7570 ^b			
9500 <i>ab</i>			
10800 <i>ab</i>			E(level): Unresolved in (α, p) .
11850 ^a			
11900			
13010 ^a			
13400 ^{ab}		1220 1 1	E(level): Unresolved in (α, p) .
14080		132° KeV	J [*] : Shell model predicts $J^{*} = 1/2^{*}$; However, the authors identified this strong state as the ${}^{13}C^*(14.13; J^{\pi}=3/2^{-})$ state seen in the ${}^{12}C(n,n)$ reaction (1985To02).
14819 ^{ab}			
15490 ^a			E(level): Unresolved in (α, p) .
16080 ^{<i>a</i>}			E(level): Unresolved in (α, p) .
17950 ^a			
20100 ^{<i>ac</i>}			
$21400?^{b}$			$T = (3/2 \ 1/2)$
			T: $3/2$ is favorable over T=1/2 (1991Br26).
<i>a a</i>			Not strongly populated.
22520 ^{<i>ac</i>}			

- [†] For each level in ¹³C*(0,3.09,3.68,3.85 MeV) reported by references: 1953Sh64, 1954St20, 1956Ma52, 1960Ka13, 1960Pi09, 1967Od01, 1968Ri16, 1969He22, 1969Li07, 1970Ga01, 1975Wi04, 1980Wa24, 1983La17, 1995He40, 1996Gi13, 1997He11, 2007Ma58, 2020Li08. [‡] From measured E_{γ} =3089.049 keV 20 with recoil energy E_R =394 eV where E_i - E_f = E_{γ} + E_R (1980Wa24).

[#] From derived E_{γ} =3683.921 keV 23 with E_{R} =561 eV (1980Wa24).

[@] From derived E_{γ} =3853.170 keV 22 with E_{R} =613 eV (1980Wa24).

& From angular distributions and p- γ angular correlations in (1953Sh64,1954St20,1971HiZF).

^{*a*} Reported in ¹⁰B(α ,p) (1991Br26).

^b Reported in ¹⁰B(⁹Be,⁶Li) (1991Br26).

^c Some states are not associated with Adopted Levels because inadequate details for association are given in the literature.

¹⁰**B**(α ,**p**),(α ,**p** γ) (continued) $\gamma(^{13}C)$ Comments Mult. E_i (level) δ 3089.049 20 3089.443 $1/2^{+}$ $1/2^{-}$ E1 E_{γ} : Measured in (1980Wa24). E_{γ} also reported in (1960Pi09, 1968Ri16, 1983La17, 1997He11, 2020Li08). Mult.: (1960Pi09). $3/2^{-}$ $0.75 \ 4$ E_v: From (1960Ka13,1960Pi09). 595.013 3684.482 590 15 3089.443 1/2+ E1 keV 11 is deduced from results in (1980Wa24). Mult.: (1960Ka13). I_{γ} : From (1980Wa24). See also $I\gamma = 6.5 \times 10^{-3}$ 10 (1960Ka13) and 9.3×10^{-3} 20 (1960Pi09). E_γ: From (1956Ma52). 3683.921 keV 23 is (3690 20) 99.25 4 $1/2^{-}$ E2+M1 -0.094 9 0 deduced in from results in (1980Wa24). See also E_{γ} =3730 keV 60 (1953Sh64: transitions from 3.68 or/and $3.85 \rightarrow g.s.$). E_{γ} also reported in (1954St20: very weak except at the $E_{\alpha}(res)=1.51$ MeV, where 16% of the total proton counts contributed to this decay, 1968Ri16, 1969Li07, 1983La17, 1997He11, 2007Ma58, 2020Li08). L_v: From (1980Wa24). Mult.: (1980Wa24). See also (1960Ka13: M1). δ: From (1980Wa24: using B(E2)=3.63 40 from (1970Wi04: ¹³C(e,e')) and τ_m =1.59 fs 13 from (1991Aj01)). $\Gamma_{\gamma} = 0.40 - 0.75 \text{ eV} (1960 \text{Ka} 13: \text{M1}).$ 3853.783 $5/2^{+}$ 169.300 4 36.3 6 3684.482 3/2-E1 E_{γ} : Measured in (1980Wa24). See also E_y=210 keV 30 (1953Sh64: about 30% decays to g.s. via 3.68 state), 169.5 keV 4 (1956Ma52), 180 keV (1960Pi09), 170 keV (1983La17). I_{γ} : From (1980Wa24). See other values: $I(3.85 \rightarrow 3.68)/I(3.85 \rightarrow g.s.)=0.32$ 7 (1960Pi09), 0.55 3 (1969Li07). See also (1956Ma52: 3.85 MeV level decays through the 3.68 MeV level with a probability 0.24 5). Mult.: (1960Pi09;1956Ma52: though M1 is not excluded). 764.316 10 1.20 4 3089.443 1/2+ E2 E_{γ} : Measured in (1980Wa24). See also E_v=765 keV 8 (1960Ka13,1960Pi09). I_{γ} : From (1980Wa24). See other reported values: I(3.85→3.09)/I(3.85→g.s.)= 9.3×10⁻³ 20 (1960Pi09), 2.5×10⁻² 5 (1969Li07). Transitions to the 3.09 MeV not observed in (1956Ma52) with the intensity <3% concluded. Mult.: (1960Pi09). 3854 1 62.5 6 $1/2^{-}$ E_v: From (1969Li07). 3853.170 keV 22 is 0 M2 deduced from results in (1980Wa24). See also E_{γ} =3844 keV 15 (1956Ma52). E_{γ} also reported in (1960Pi09, 1968Ri16, 1983La17, 1995He40, 1997He11,

Continued on next page (footnotes at end of table)

$^{10}{\bf B}(\alpha,\!{\bf p}),\!(\alpha,\!{\bf p}\gamma)$ (continued)

$\gamma(^{13}C)$ (continued)

