C(¹⁴B,¹³Be) 2014Ra07

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024

2004Le29: ${}^{12}C({}^{14}B, {}^{13}Be) E=41 \text{ MeV/nucleon}$, Measured ${}^{12}Be+n$ relative energy spectrum. Preliminary data from GANIL. The relative energy spectrum is fit with an s-wave resonance at low energies ($\approx 800 \text{ keV}$), along with a d-wave resonance around 2 MeV and perhaps some influence from a higher state.

2014Ra07: XUNDL dataset compiled by TUNL, 2014. Includes ¹²C(¹⁵B,¹³Be) reaction.

- Beams of 35 MeV/nucleon ^{14,15}B ions were separately tuned by fragmenting a 55 MeV/nucleon ¹⁸O beam on a thick ⁹Be target at GANIL. The beams were optimized at the LISE target position, where nuclides were clearly identified event-by-event via time-of-flight. The incident beam particle trajectories were measured using two position sensitive drift chambers, and the position on a ^{nat}C target was determined with a resolution of \approx 1.5 mm (FWHM).
- Reaction products were detected by either a $5\times5 \text{ cm}^2$ position sensitive $\Delta E \Delta E E$ Si-strip array or by the 90 element DEMON neutron array. The ¹²Be+n events were analyzed for the one proton removal reactions on ¹⁴B, while ¹²Be+n+n events were analyzed for ¹⁵B breakup events. In the case of the ¹⁴B \rightarrow ¹³Be+p \rightarrow (¹²Be+n)+p breakup events, the decay energy is straight forward to determine. On the other hand, the breakup of ¹⁵B \rightarrow ¹³Be+n+p \rightarrow (¹²Be+n)+n+p can involve more complex processes and requires further analysis to consider the two neutrons in the final state and potential involvement of ¹⁴Be states; essentially a non-resonant continuum shape that is generated by random fragment-neutron event mixing is subtracted from the net kinematic energy reconstructed spectrum.
- The potential systematic involvement of ¹²Be excited states was evaluated by analyzing the γ -ray energy deposited in the DEMON array for ¹²Be+ γ events. Limits of $\approx <5\%$ were estimated for participation of excited states.
- The analysis of ${}^{15}B \rightarrow ({}^{12}Be+n+n)+p$ data indicated that ${}^{14}Be*(1.5 \text{ MeV})$ breakup events, with $E({}^{12}Be+n+n)<800$ keV, contribute significantly to the structure of the ${}^{12}Be+n$ relative energy spectrum, by creating/enhancing a peak in the spectrum at $E({}^{12}Be+n)\approx200$ keV.
- Initial analysis suggested that the ¹⁴B breakup data could be fit with either a single $E(^{12}Be+n)=2.40$ MeV 20 resonance with $\Gamma=0.90$ MeV 22, or a better fit with s-wave and d-wave resonances located at $E(^{12}Be+n)=0.70$ MeV 11 and 2.40 MeV 14 with $\Gamma=1.70$ MeV 22 and 0.70 MeV 32 respectively.
- A significant discussion on the shell structures of both, the N=9 isotones and the ¹²Be structure, led to a third interpretation, which is preferred by the authors. The data are well fit by $J^{\pi}=1/2^+$ and $5/2^+$ resonances at $E(^{12}Be+n)=0.40$ MeV 3 and 0.85^{+15}_{-11} MeV with $\Gamma=0.80^{+18}_{-12}$ MeV and 0.30^{+34}_{-15} MeV, and a higher energy $J^{\pi}=5/2^+$ state at $E(^{12}Be+n)=2.35$ MeV 14 with $\Gamma=1.50$ MeV 40.

¹³Be Levels

E(level) [#]	J ^π @	Г	E' (MeV) ^{†‡}	Comments
0	$1/2^{+}$	0.80 MeV +18-12	0.40 3	E(level): The state has an intensity defined as I=1.0.
0.40×10 ³ 15	5/2+	0.30 MeV +34-15	0.85 15	E(level): From E(${}^{12}\text{Be+n}$)=0.85 MeV +15-11. E(level): The state has an intensity of I=0.40 7 relative to the E _{res} =0.40 MeV state.
1.90×10 ³ 14	5/2+	1.50 MeV 40	2.35 14	E(level): The state has an intensity of I=0.80 9 relative to the E_{res} =0.40 MeV state.

[†] E' is a relative excitation energy scale with E'=0 at the neutron separation energy. We use this scale because most articles report level energies with respect to the $n+{}^{12}Be_{g.s.}$ center of mass energy.

[‡] From (2014Ra07).

[#] The ground state is taken as $E_{c.m.}(n+{}^{12}Be_{g.s.})=0.45$ MeV 1; see Adopted Levels.

[@] From analysis of the $n+^{12}$ Be energy distributions and associated γ rays of (2014Ra07).