⁹Be(¹⁸O, ¹³Be) **2001Th01**

Type Author Citation Literature Cutoff Date

Full Evaluation J. H. Kelley, C. G. Sheu and J. E. Purcell NDS 198,1 (2024)

1-Aug-2024

2001Th01: ${}^9\mathrm{Be}({}^{18}\mathrm{O}, {}^{13}\mathrm{Be} \to {}^{12}\mathrm{Be} + \mathrm{n}) \; \mathrm{E}({}^{18}\mathrm{O}) = 80 \; \mathrm{MeV/nucleon}.$ The authors impinged ${}^{18}\mathrm{O}$ ions onto a 94 mg/cm² berylium foil and momentum analyzed the residual ${}^{12}\mathrm{Be}$ and neutron reaction products that were emitted along $\theta \approx 0^\circ$. The decay products were analyzed using typical sequential decay neutron spectroscopy techniques. Monte Carlo analysis of the $\mathrm{n} + {}^{12}\mathrm{Be}$ relative energy spectrum is most consistent with a low-lying s-wave state with a scattering length $\mathrm{a_s} < -10 \; \mathrm{fm}$, which corresponds to $\mathrm{E_{res}} \leq 200 \; \mathrm{keV}$. The analysis explores the possibility for participation of $\mathrm{^{12}Be}$ excited states. In the best fit, there is also a contribution from a $d_{5/2}$ state at $\mathrm{E_{res}} \approx 2.0 \; \mathrm{MeV}$.

See also (1995ThZZ).

¹³Be Levels

[†] The ground state is taken as $E_{c.m.}(n+{}^{12}Be_{g.s.})=0.45$ MeV 1; see Adopted Levels.

 $^{^{\}ddagger}$ From analysis of the n+ 12 Be energy distributions of (2001Th01).