⁹Be(¹³B,¹³Be) 2015Ma62

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024

2015Ma62: XUNDL dataset compiled by TUNL, 2015.

The authors populated neutron-unbound states in ¹³Be using a ¹³B beam and charge exchange reactions on a ⁹Be target.

A beam of 71 MeV/nucleon ¹³B ions was produced by fragmenting a 120 MeV/nucleon ¹⁸O beam on a ⁹Be target at the NSCL/A1900 beam facility. The ¹³Be beam impinged on a 51 mg/cm² ⁹Be target placed at the large-gap sweeper magnet target position. Charge-exchange reactions populating ¹³Be states resulted in events where neutrons from the decay of ¹³Be states were detected in the MONA-LISA array, while ¹²Be ions from the decay were momentum analyzed and characterized using the dipole sweeper magnet. Finally the decay energy was reconstructed by the invariant-mass method.

The present results are fitted with both two- and three-resonance assumptions. The best fit includes an s-wave resonance at $E_{res}=0.73$ MeV 9 [J^{π}=1/2⁺ Γ =1.98 MeV 34] and a d-wave resonance at $E_{res}=2.56$ MeV 13 [J^{π}=5/2⁺, Γ =2.29 MeV 73].

A three-resonance fit is provided, though the approach is complex. The parameters of the lowest state are fixed by (2014Ra07) at $E_{res}=0.40$ MeV, $\Gamma=0.80$ MeV and $J^{\pi}=1/2^+$; the parameters of the highest resonance are taken from the 2-resonance fit $E_{res}=2.56$ MeV, $\Gamma=2.29$ MeV and $J^{\pi}=5/2^+$; in this case a third resonance can be fitted at $E_{res}=1.05$ MeV *10* with $J^{\pi}=5/2^+$ and $\Gamma=0.50$ MeV *20*.

¹³Be Levels

E(level) [‡]	$J^{\pi #}$	Г	$E' (MeV)^{\dagger}$
0.28×10 ³ 9	$1/2^{+}$	1.98 MeV 34	0.73 9
2.11×10 ³ 13	$5/2^{+}$	2.29 MeV 73	2.56 13

[†] E' is a relative excitation energy scale with E'=0 at the neutron separation energy. We use this scale because most articles report level energies with respect to the $n+^{12}Be_{g.s.}$ center of mass energy.

[‡] The ground state is taken as $E_{c.m.}(n+{}^{12}Be_{g.s.})=0.45$ MeV *1*; see Adopted Levels. Resonance energies from the best fit, which is a two-parameter fit shown in Fig. 1. An alternate 3-resonance fit is provided in Fig. 2 and presented in Table 1.

[#] From analysis of the $n+^{12}$ Be energy distributions of (2015Ma62).