¹H(¹⁴Be,¹³Be):2 2019Co12

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024	

2019Co12: XUNDL dataset compiled by TUNL 2020.

- The authors populated resonances in the unbound ¹³Be nucleus using (p,pn) quasi-free scattering reactions to knock-out a neutron from ¹⁴Be nuclei.
- A cocktail beam, including 265 MeV/nucleon ¹⁴Be ions, was produced by fragmenting a ⁴⁸Ca beam at the RIKEN/BigRIPS fragment separator. The ¹⁴Be ions were identified in the beam using time-of-flight techniques before impinging on the 15 cm thick liquid hydrogen target of the MINOS device that is surrounded by a charged-particle time projection chamber (TPC). Protons scattered out of the target were momentum analyzed using the TPC, a multi-wire drift chamber (MWDC) and an array of plastic energy detectors covering $\theta \approx 30^{\circ} - 65^{\circ}$; the quasi-free scattered neutron was momentum analyzed on the opposite side of the beam using the WINDS array of plastic scintillators that covered $\theta \approx 20^{\circ} - 60^{\circ}$.
- The ¹³Be products decayed in flight into a ¹²Be+n pair; the heavy ¹²Be fragment was momentum analyzed using the SAMURAI dipole magnet and a set of MWDCs for tracking while the associated neutron was momentum analyzed using the position-sensitive NEBULA array of plastic scintillators. Finally, 68 crystals from the DALI2 γ ray detection array partially covered θ =34°-115° to measure γ rays from ¹³Be* \rightarrow n+¹²Be* decays.
- Separate spectra for the $n+{}^{12}Be^{*}(0,2.1,2.7 \text{ MeV})$ components are obtained using the coincidence γ rays. Analysis of the spectra presented in figure 4 indicates ${}^{13}Be$ resonances at $S_n=-0.48$, -2.3, -5.1 and -5.7 MeV decaying to ${}^{12}Be^{*}(0,2.1,2.7 \text{ MeV})$. A detailed analysis of the knocked-out neutrons associated with the low energy part of the $n+{}^{12}Be$ relative energy spectrum is best fit assuming dominant p-wave strength rather than s-wave strength; this supports a $J^{\pi}=1/2^{-}$ assignment for the $S_n=-0.48$ MeV resonance. A significant discussion on the nature of the low-energy strength is included that compares the findings of (2010Ko17, 2013Ak01, 2013Ak02, 2018Ri05). The authors developed a three-body ${}^{12}Be+n+n$ model for the ${}^{14}Be$ projectile and analyzed the quasi-free neutron scattering reaction dynamics; the results are consistent with dominant p-wave strength at low energies with no need for significant contributions from a $J^{\pi}=1/2^+$ virtual state of ${}^{13}Be$.

Measurement of the neutron pairing correlations obtained in this experiment are discussed in (2023Co13, 2024Ca06).

¹³Be Levels

E(level) [#]	J ^π @	$E' (MeV)^{\dagger\ddagger}$	Comments
0	$(1/2^{-})$	0.48 40	Decays via ${}^{12}\text{Be}_{g.s.}$ +n with $\text{E}_{\text{rel.}}(n+{}^{12}\text{Be})=0.48$ MeV.
1.9×10^{3}	$(5/2^+)$	2.3 9	Decays via ${}^{12}\text{Be}_{g,s}$ +n and ${}^{12}\text{Be}^*(2.1 \text{ MeV})$ +n.
4.7×10^{3}		5.1 13	Decays via ${}^{12}\text{Be}^{*}(2.1 \text{ MeV})+n$ with $\text{E}_{\text{rel.}}(n+{}^{12}\text{Be}^{*})=3.0 \text{ MeV}$.
5.3×10^{3}		5.7 14	Decays via ¹² Be*(2.7 MeV)+n with $E_{rel.}(n+{}^{12}Be)=3.0$ MeV.

[†] E' is a relative excitation energy scale with E'=0 at the neutron separation energy. We use this scale because most articles report level energies with respect to the $n+{}^{12}Be_{g.s.}$ center of mass energy.

[‡] Invariant mass resolution is $0.587 \times (E_{res})^{-1/2}$.

[#] The ground state is taken as $E_{c.m.}(n+{}^{12}Be_{g.s.})=0.45$ MeV 1; see Adopted Levels.

[@] From analysis of the $n+^{12}$ Be energy distribution of (2019Co12).