1 H(14 B, 13 Be) 2018Ri05

	History				
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024		

2015Ri03: ¹H(¹⁴B,¹³Be). A beam of ¹⁴B ions, produced by fragmenting a 490 MeV/nucleon ⁴⁰Ar beam at the GSI/FRS, impinged on a 9.7 mm thick CH₂ foil that was located at the ALADIN spectrometer target position. Quasi-free (p,2p) scattering reactions removed protons from ¹⁴B and populated states in neutron-unbound ¹³Be nuclei, which quickly break apart into ¹²Be+n. At the exit of the spectrometer, the momenta of breakup ¹²Be ions and associated neutrons were measured using a Δ E- Δ E-ToF array (for heavy particles) and the LAND neutron array (for neutrons). Additionally, an array of 162 NaI scintillator detectors surrounded the target with the aim of detecting any emitted γ rays, which is necessary to determine the contributions from ¹²Be_{g.s.} and excited states. Data from this experiment is included in the analysis of (2018Ri05).

2018Ri05: XUNDL data set compiled by TUNL, 2018.

The present study aims to measure the full set of ${}^{12}Be+n$ system and γ -ray experimental observables for decay of ${}^{13}Be$ resonances.

- A beam of 400 MeV/nucleon ¹⁴B ions, from the GSI/FRS facility impinged on a 922 mg/cm² polyethylene target that was surrounded by the 159 NaI element Crystal Ball γ -ray detector array. The ¹³Be nuclides, formed in single-proton removal reactions, immediately decayed into ¹²Be+n; the decay neutrons were momentum analyzed using the 2 ×2 meter² LAND neutron wall, while the ¹²Be core ejecta were identified and momentum analyzed using the ALADIN dipole along with a double sided ΔE strip detector and the "time-of-flight wall". Associated γ -rays were detected using the Crystal Ball.
- The $E_{c.m.}(^{12}Be+n)$ relative energy spectrum is analyzed for $^{12}Be+n$ and $^{12}Be+n+\gamma$ data. Evidence for five groups is found. Notably, two groups are found in coincidence with the $^{12}Be*(2.109 \text{ MeV}) \rightarrow ^{12}Be(0) \gamma$ -ray transition: first from a neutron group at $E_{res} < 500 \text{ keV}$ and second from a neutron group at $E_{res} \approx 2 \text{ MeV}$. Overall, five neutron groups are identified in the present experimental work, with the three additional groups at $E_{res} \approx 2.11$, 2.92 and 4.0 associated with decay directly to $^{12}Be_{g.s.}$.
- The authors highlighted the shortcomings of past experiments, due to incomplete collection of necessary information, and they aimed to give an explanation of the complete evidence on ¹³Be level data. Results from proton knockout from ¹⁴B at 35 MeV/nucleon (2014Ra07) and 400 MeV/nucleon (present), neutron knockout data from ¹⁴Be at 69 MeV/nucleon (2010Ko17), 287 MeV/nucleon (2007Si24) and 304 MeV/nucleon (2013Ak02), and single charge exchange reactions with ¹³B at 71 MeV/nucleon were considered in developing an overall interpretation. The analysis aimed to explain differences in peak positions and group widths by accounting for branching to ¹²Be*(2.109) and the differences in strengths for levels populated by the different reaction mechanisms and at different reaction energies.
- In general, the present work identifies levels at $S_n = -0.86$, -2.11, -2.92 and -4.0 MeV that decay to ${}^{12}Be_{g.s.}$. In addition, the levels at $S_n = -2.11$ and -4.0 MeV also decay to ${}^{12}Be^*(2.109)$ with resonance energies around $E_{c.m.}({}^{12}Be^*+n)\approx0.1$ and 2.0 MeV; since there is overlap of the neutron groups, it is necessary to deconvolute ground state branches from the ${}^{12}Be^*(2.109)$ branches in order to obtain accurate state widths. Furthermore, the authors suggest that the different reactions/mechanisms result in different amplitudes for populating the levels, which further complicates an overall analysis.
- A note in proof of (2016Fo07) details unpublished 1 H(14 B,2p) data where a E_{res}(n+ 12 Be)= 0.95 MeV group is connected to population of 12 Be^{*}(2.1 MeV).

¹³Be Levels

E(level) [#]	J ^π @	Г	$E' (MeV)^{\ddagger}$	Comments
0.41×10 ³ 4	1/2+	1.70 MeV 15	0.86 4	E(level): Decays via ${}^{12}\text{Be}_{g.s.}+n$.
1.66×10 ³ 5	5/2+	0.4 [†] MeV	2.11 5	E(level): Decays via ${}^{12}\text{Be}_{g.s.}$ +n with E_{res} =2.11 MeV and ${}^{12}\text{Be}^*(2109)$ +n with $E_{res}(n+{}^{12}\text{Be}^*)$ <0.1 MeV.
≈2.47×10 ³ †	5/2+	0.4 [†] MeV	2.92	E(level): Decays via ${}^{12}\text{Be}_{g.s.}$ +n.
$\approx 3.6 \times 10^{3}$ [†]	$(3/2^+)$	0.4 [†] MeV	4.0 [†]	E(level): Decays via ${}^{12}\text{Be}_{g.s.}$ +n with E_{res} =4.0 MeV and ${}^{12}\text{Be}*(2109)$ +n with $\text{E}_{res}(n+{}^{12}\text{Be}*)\approx 2.1$ MeV.

[†] From (1992Os04, 1998Go30, 1998Be28).

^{\ddagger} E' is a relative excitation energy scale with E'=0 at the neutron separation energy. We use this scale because most articles report level energies with respect to the n+¹²Be_{g.s.} center of mass energy.

[#] The ground state is taken as $E_{c.m.}(n+{}^{12}Be_{g.s.})=0.45$ MeV 1; see Adopted Levels.

[@] From analysis of the n+¹²Be energy distributions and associated γ rays of (2018Ri05).